楼主: citydrifter
28169 24

几何布朗运动与随机游走什么区别  关闭 [推广有奖]

  • 0关注
  • 2粉丝

博士生

16%

还不是VIP/贵宾

-

威望
0
论坛币
36 个
通用积分
0.1190
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2764 点
帖子
383
精华
0
在线时间
48 小时
注册时间
2005-9-28
最后登录
2016-8-10

楼主
citydrifter 发表于 2006-6-5 17:32:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<P>多谢了!</P>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:布朗运动 随机游走 求教 随机 布朗 运动 几何

沙发
xuechao2008 发表于 2006-6-5 21:09:00
我也想知道!

藤椅
我想当君主 发表于 2006-6-5 23:57:00
<P>随机游走是不是也称马尔科夫过程?布朗运动是不是也称维纳过程?</P>
<P>维纳过程是马尔科夫随机过程的特殊形式</P>
<P>对这个问题我也不了解,但可以提供一点线索,赫尔《期权,期货和其他衍生产品》的第十章有关于这方面的介绍,希望对你们能有帮助</P>

板凳
happyzkh 发表于 2006-6-6 08:31:00
去看看随机过程的教材,比如人大统计系的那套,不懂会不会有帮助?

报纸
citydrifter 发表于 2006-6-6 08:34:00
<DIV class=quote><B>以下是引用<I>happyzkh</I>在2006-6-6 8:31:00的发言:</B><BR>去看看随机过程的教材,比如人大统计系的那套,不懂会不会有帮助?</DIV>
<P>人大统计系那套,我看过《应用时间序列分析》,感觉挺不错的。《应用随机分析》也准备去弄来看看。

地板
leozhengli 发表于 2006-6-6 09:35:00
<P>Radom walk process is also called Markov process that has three components: wiener process, generalized wiener process and ito process. Geometric Brownian Motion is a typical process of Ito process.</P>
<P>Hope helpful:)  </P>

7
cfashit 发表于 2006-6-6 13:53:00
<P>The term <I><B>Brownian motion</B></I> (in honor of the botanist <a href="http://en.wikipedia.org/wiki/Robert_Brown_%28botanist%29" target="_blank" >Robert Brown</A>) refers to either</P>
<OL>
<LI>The physical phenomenon that minute particles, immersed in a fluid, move about randomly; or
<LI>The mathematical models used to describe those random movements. </LI></OL>
<P>The mathematical model can also be used to describe many phenomena not resembling (other than mathematically) the random movements of minute particles. An often quoted example is <a href="http://en.wikipedia.org/wiki/Stock_market" target="_blank" >stock market</A> fluctuations. Another example is the evolution of physical characteristics in the fossil record.</P>
<P>Brownian motion is among the simplest <a href="http://en.wikipedia.org/wiki/Stochastic_process" target="_blank" >stochastic processes</A> on a continuous domain, and it is a <a href="http://en.wikipedia.org/wiki/Limit_%28mathematics%29" target="_blank" >limit</A> of both simpler (see <a href="http://en.wikipedia.org/wiki/Random_walk" target="_blank" >random walk</A>) and more complicated stochastic processes. This <a href="http://en.wikipedia.org/wiki/Universality_%28dynamical_systems%29" target="_blank" >universality</A> is closely related to the universality of the <a href="http://en.wikipedia.org/wiki/Normal_distribution" target="_blank" >normal distribution</A>. In both cases, it is often mathematical convenience rather than accuracy as models that motivates their use. All three quoted examples of Brownian motion are cases of this:</P>
<OL>
<LI>It has been argued that <a href="http://en.wikipedia.org/wiki/L%C3%A9vy_flight" target="_blank" >Lévy flights</A> are a more accurate, if still imperfect, model of stock-market fluctuations.
<LI>The physical Brownian motion can be modelled more accurately by a more general <a href="http://en.wikipedia.org/wiki/Diffusion" target="_blank" >diffusion process</A>.
<LI>The dust hasn't settled yet on what the best model for the fossil record is, even after correcting for non-<a href="http://en.wikipedia.org/wiki/Normal_distribution" target="_blank" >Gaussian</A> data. </LI></OL>
<P>reference:  <a href="http://en.wikipedia.org/wiki/Brownian_motion" target="_blank" >http://en.wikipedia.org/wiki/Brownian_motion</A></P>
<P>random walk is just one of phenomenons mentioned in Brownian Motion, i guess.  i sort of think that random walk was derived from Brownina Motion.</P>
i am dreaming that one day we can download all the materials for free

8
mic116921 发表于 2006-6-10 22:31:00

9
lshi018 发表于 2006-6-25 06:39:00
<P>布朗运动在物理化学上是三维的随机,在金融上是是二维的随机</P>
签名被屏蔽

10
lswgdhy 发表于 2007-12-27 19:46:00
看看
未经一番寒彻骨,哪得梅花扑鼻香

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-29 12:55