EViews-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 软件培训>>

Eviews软件培训

>>

EViews

EViews

发布:cnmbgyw33 | 分类:Eviews软件培训

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

获取电子版《CDA一级教材》

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

单一方程时间序列模型探讨的是单个变量的动态规律性,但在现实经济分析中,经常会面对由多个变量构成的系统,而这些变量之间通常具有关联性。因此,在一个经济系统中,一个变量的变化不仅会与其自身滞后值有关,还会 ...
免费学术公开课,扫码加入


单一方程时间序列模型探讨的是单个变量的动态规律性,但在现实经济分析中,经常会面对由多个变量构成的系统,而这些变量之间通常具有关联性。因此,在一个经济系统中,一个变量的变化不仅会与其自身滞后值有关,还会与其它变量滞后值有关。这就需要把单变量自回归模型推广到多变量自回归模型,即VAR模型。

一、向量自回归(VAR)模型

向量自回归模型是Sims(vector autoregressivemodel)在1980年提出的。这种模型采用多方程联立的形式,它不以经济理论为基础,在模型的每一个方程中,内生变量对模型的全部内生变量的滞后值进行回归,从而估计全部内生变量的动态关系。

(一)VAR模型的定义

VAR模型是自回归模型的联立形式,所以称向量自回归模型。假设y1ty2t之间存在关系,如果分别建立两个自回归模型

y1, t = f (y1, t-1, y1, t-2, …)

y2, t = f (y2, t-1, y2, t-2, …)

则无法捕捉两个变量之间的关系。如果采用联立的形式,就可以建立起两个变量之间的关系。VAR模型的结构与两个参数有关。一个是所含变量个数N,一个是最大滞后阶数k

以两个变量y1ty2t滞后1期的VAR模型为例,

http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image001.gif y1, t = m1 + p11.1 y1, t-1 + p12.1 y2, t-1 + u1 t

y2, t = m2 + p21.1 y1, t-1 + p22.1 y2, t-1 + u2 t (4.1.1)

其中u1 t, u2 t ~ IID (0, s 2), Cov(u1 t, u2 t) = 0。写成矩阵形式是,

http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image003.gif=http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image005.gif+http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image007.gifhttp://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image009.gif+http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image011.gif (4.1.2)

设, Yt =http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image003.gif, m =http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image005.gif, P1 =http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image007.gif, ut =http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image011.gif,

则, Yt = m + P1 Yt-1 + ut (4.1.3)

那么,含有N个变量滞后k期的VAR模型表示如下:

Yt= m+ P1Yt-1+ P2Yt-2+ … + PkYt-k+ ut,ut ~ IID (0, W) (4.1.4)

其中,

Yt= (y1, ty2, tyN, t)'

m = (m1m2… mN)'

Pj =http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image014.gif,j =1, 2, …, k

ut = (u1 t u2,tuN t)',

YtN´1阶时间序列列向量。 mN´1阶常数项列向量。P1, … , Pk 均为N´N阶参数矩阵,ut ~ IID (0, W) 是N´1阶随机误差列向量,其中每一个元素都是非自相关的,但这些元素,即不同方程对应的随机误差项之间可能存在相关。

因VAR模型中每个方程的右侧只含有内生变量的滞后项,他们与ut是不相关的,所以可以用OLS法依次估计每一个方程,得到的参数估计量都具有一致性。

(二)VAR模型的特点

(1)不以严格的经济理论为依据。在建模过程中只需明确两件事:①共有哪些变量是相互有关系的,把有关系的变量包括在VAR模型中;②确定滞后期k。使模型能反映出变量间相互影响的绝大部分。

(2)VAR模型对参数不施加零约束。(参数估计值有无显著性,都保留在模型中)

(3)VAR模型的解释变量中不包括任何当期变量,所有与联立方程模型有关的问题在VAR模型中都不存在。

(4)VAR模型的另一个特点是有相当多的参数需要估计。比如一个VAR模型含有三个变量,最大滞后期k = 3,则有k N 2 = 3 ´ 32 = 27个参数需要估计。当样本容量较小时,多数参数的估计量误差较大。

(5)无约束VAR模型的应用之一是预测。由于在VAR模型中每个方程的右侧都不含有当期变量,这种模型用于预测的优点是不必对解释变量在预测期内的取值做任何预测。

西姆斯(Sims)认为VAR模型中的全部变量都是内生变量。近年来也有学者认为具有单向因果关系的变量,也可以作为外生变量加入VAR模型。

二、格兰杰非因果性检验

VAR模型还可用来检验一个变量与另一个变量是否存在因果关系。经济计量学中格兰杰(Granger)非因果性定义如下:

格兰杰非因果性:如果由ytxt滞后值所决定的yt的条件分布与仅由yt滞后值所决定的条件分布相同,即

¦(yt | yt -1,…, xt -1, …) = ¦( yt | yt -1,…), (4.2.1)

则称xt -1对yt存在格兰杰非因果性。

格兰杰非因果性的另一种表述是其他条件不变,若加上xt的滞后变量后对yt的预测精度不存在显著性改善,则称xt -1对yt存在格兰杰非因果性关系。

为简便,通常总是把xt-1 对yt存在非因果关系表述为xt(去掉下标 -1)对yt存在非因果关系(严格讲,这种表述是不正确的)。在实际中,除了使用格兰杰非因果性概念外,也使用“格兰杰因果性”概念。顾名思义,这个概念首先由格兰杰(Granger 1969)提出。西姆斯(Sims 1972)也提出因果性定义。这两个定义是一致的。

根据以上定义,xt yt 是否存在因果关系的检验可通过检验VAR 模型以yt 为被解释变量的方程中是否可以把xt 的全部滞后变量剔除掉而完成。比如VAR 模型中以yt 为被解释变量的方程表示如下:

yt = http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image016.gif+http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image018.gif+ u1 t (4.2.3)

如有必要,常数项,趋势项,季节虚拟变量等都可以包括在上式中。则检验xt yt存在格兰杰非因果性的零假设是

H0:b1 =b2 = …= bk = 0

显然如果(4.2.3)式中的xt 的滞后变量的回归参数估计值全部不存在显著性,则上述假设不能被拒绝。换句话说,如果xt 的任何一个滞后变量的回归参数的估计值存在显著性,则结论应是xt yt 存在格兰杰因果关系。上述检验可用F统计量完成。

F= http://file:///C:/DOCUME%7E1/ADMINI%7E1/LOCALS%7E1/Temp/msohtmlclip1/01/clip_image020.gif (4.2.3)

其中SSEr 表示施加约束(零假设成立)后的残差平方和。SSEu 表示不施加约束条件下的残差平方和。k表示最大滞后期。N表示VAR模型中所含当期变量个数,本例中N = 2,T表示样本容量。在零假设成立条件下,F统计量近似服从F( k, T - k N ) 分布。用样本计算的F值如果落在临界值以内,接受原假设,即xt yt 不存在格兰杰因果关系。

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-1393035-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
数据分析师 人大经济论坛 大学 专业 手机版
联系客服
值班时间:工作日(9:00--18:00)