非常有用的Matlab工具箱(分为24大类)
发布:neauzhy | 分类:Matlab软件培训
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
TOP热门关键词
Introductiontosltoolboxsltoolbox(StatisticalLearningToolbox)organizesacomprehensivesetofmatlabcodesinstatisticallearning,patternrecognitionandcomputervision.Itincludes256m-filesin24categories,whichare ...
免费学术公开课,扫码加入![]() |
sltoolbox (Statistical Learning Toolbox) organizes a comprehensive set of matlab codes in statistical learning, pattern recognition and computer vision. It includes 256 m-files in 24 categories, which are from low-level computational routines to high-level frameworks and algorithms. The toolbox have following main features:
(1) it covers many active research topics in learning and vision, including classification, regression, statistical modeling, finite mixture model, graph theory-based learning, subspace learning, kernel learning, manifold learning, tensor algebra, vector quantization and vocabulary learning.
(2) it offers many useful utilities to facilitate your experiments in matlab, including a set of kits to manipulate data, text and files. In addition, it offers a matlab-based script system called experiment description language with an xml-based experiment control system to help you run a large batch of experiments with ease.
(3) it is highly optimized. Much efforts have been devoted to improve the run-time efficiency of the codes. It is achieved with three ways: deducing equivalent mathematical forms for fast computation, grouping the operations into matrix-based computations to maximum degree, and writing the codes in cpp-mex for those cannot be organized into matrix computation.
(4) it is flexible and extensible. For most of the functions, you can control a lot of properties to adapt its behaviour to your need. For many algorithms, the implementations support weighted samples so that you can easily incorporate the algorithm into the environment using weights. In addition, in some of the algorithms, you can change the functions' behaviour by supplying your own call-back function. For example, in K-means, you can specify your special function to measure distances or compute means; in spectral learning, you can specify your function to caculate the graph edge weights in your own manner.
(5) it is well organized. The whole toolbox is organized according to the rules in software engineering. They are not a simple collection of many algorithms, but a carefully designed system, so that the codes can be maximally reused and cooperate well.
(6) it is easy to use. Detailed help information is given for each m-file. I have tried to design friendly interfaces to user. For most of the functions, you can use a small number of arguments to invoke them in default settings, when you would like to gain more control on their behaviour, you can tell them your specification by setting properties, such as
f(x1, x2, 'propertyname1', propertyvalue1, 'propertyname2', propertyvalue2, ...)
(7) it is robust. Attention has been paid to the numerical stability of the computations and some steps have been taken to enhance the stability. In addition, a lot of error-checking statements are used to check the consistency of the input arguments. I have tried to lie a good balance between robustness and effiency, and increase the robustness without notably compromising the run-time speed.
The following is a brief list of the functions offered in sltoolbox.
It contains the following categories:
core: The core computational routines. The efficient implementation of a set of common computation routines.
smallmat: Fast functions to compute on a set of small matrices
utils: A set of useful toolkits to manipulate data.
utils_ex: Other useful kits
fileio: Facilities to manage files
text: Kits to parse and manipulate strings and texts.
perfeval: classification performance evaluation
imgproc: Functions for image-based learning and batch image processing
visualize: Visualization of data and models
xmlkits: small kits to extract information from XML elements
ann: Approximate nearest neighbors by KD-tree
cluster: Data clustering
discrete: Vector quantization, vocabulary building and histogram-based computation
graph: Graph (the graph in graph theory) contruction
interp: Interpolation kernels
kernel: Kernel learning and kernelization
learn: Some basic learning architectures
regression: Linear and Logistic regression
stat: Statistical modeling and Finite mixture model (such as GMM)
subspace: Representative subspace learning algorithms
subspace_ex: Subspace learning algortihms for very high-dimension data
manifold: Manifold embedding learning
tensor: Tensor algebra
expdl: Experiment description language
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:非常有用的Matlab工具箱(分为24大类)
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_matlabruanjianpeixun_1036513_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



