Numerical Analysis using Matlab and Spreadsheet
发布:方天画戟 | 分类:Matlab软件培训
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
经管之家新媒体交易平台
提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】
TOP热门关键词
免费学术公开课,扫码加入 |
Numerical Analysis using Matlab and Spreadsheet
Steven T. Karris
PDF, P.570, 9.23M
[UseMoney=7]
[/UseMoney]
Table of Contents
Chapter 1
Introduction to MATLAB
Command Window....................................................................................................................... 1-1
Roots of Polynomials.................................................................................................................... 1-3
Polynomial Construction from Known Roots .............................................................................. 1-4
Evaluation of a Polynomial at Specified Values ........................................................................... 1-5
Rational Polynomials .................................................................................................................... 1-7
Using MATLAB to Make Plots.................................................................................................... 1-9
Subplots...................................................................................................................................... 1-18
Multiplication, Division and Exponentiation............................................................................. 1-18
Script and Function Files............................................................................................................ 1-25
Display Formats .......................................................................................................................... 1-29
Summary .................................................................................................................................... 1-30
Exercises..................................................................................................................................... 1-35
Solutions to Exercises ................................................................................................................. 1-36
Chapter 2
Root Approximations
Newton’s Method for Root Approximation ................................................................................. 2-1
Approximations with Spreadsheets .............................................................................................. 2-7
The Bisection Method for Root Approximation........................................................................ 2-19
Summary .................................................................................................................................... 2-27
Exercises..................................................................................................................................... 2-28
Solutions to Exercises ................................................................................................................. 2-29
Chapter 3
Sinusoids and Phasors
Alternating Voltages and Currents .............................................................................................. 3-1
Characteristics of Sinusoids .......................................................................................................... 3-2
Inverse Trigonometric Functions ............................................................................................... 3-10
Phasors ....................................................................................................................................... 3-10
Addition and Subtraction of Phasors ......................................................................................... 3-11
Multiplication of Phasors............................................................................................................ 3-12
Division of Phasors ..................................................................................................................... 3-12Exponential and Polar Forms of Phasors ....................................................................................3-13
Summary.....................................................................................................................................3-18
Exercises .....................................................................................................................................3-21
Solutions to Exercises..................................................................................................................3-22
Chapter 4
Matrices and Determinants
Matrix Definition ......................................................................................................................... 4-1
Matrix Operations....................................................................................................................... 4-2
Special Forms of Matrices ............................................................................................................ 4-5
Determinants............................................................................................................................... 4-9
Minors and Cofactors................................................................................................................. 4-12
Cramer’s Rule............................................................................................................................ 4-16
Gaussian Elimination Method ................................................................................................... 4-18
The Adjoint of a Matrix............................................................................................................. 4-19
Singular and Non-Singular Matrices ......................................................................................... 4-20
The Inverse of a Matrix.............................................................................................................. 4-21
Solution of Simultaneous Equations with Matrices................................................................... 4-23
Summary.................................................................................................................................... 4-29
Exercises .................................................................................................................................... 4-33
Solutions to Exercises................................................................................................................. 4-35
Chapter 5
Differential Equations, State Variables, and State Equations
Simple Differential Equations .......................................................................................................5-1
Classification ................................................................................................................................5-2
Solutions of Ordinary Differential Equations (ODE)...................................................................5-5
Solution of the Homogeneous ODE .............................................................................................5-8
Using the Method of Undetermined Coefficients for the Forced Response...............................5-10
Using the Method of Variation of Parameters for the Forced Response....................................5-19
Expressing Differential Equations in State Equation Form ........................................................5-23
Solution of Single State Equations..............................................................................................5-27
The State Transition Matrix.......................................................................................................5-28
Computation of the State Transition Matrix..............................................................................5-30
Eigenvectors ...............................................................................................................................5-37
Summary.....................................................................................................................................5-41
Exercises .....................................................................................................................................5-46
Solutions to Exercises..................................................................................................................5-47Chapter 6
Fourier, Taylor, and Maclaurin Series
Wave Analysis .............................................................................................................................. 6-1
Evaluation of the Coefficients ...................................................................................................... 6-2
Symmetry ..................................................................................................................................... 6-7
Waveforms in Trigonometric Form of Fourier Series................................................................. 6-12
Alternate Forms of the Trigonometric Fourier Series ................................................................ 6-25
The Exponential Form of the Fourier Series .............................................................................. 6-28
Line Spectra ............................................................................................................................... 6-33
Numerical Evaluation of Fourier Coefficients............................................................................ 6-36
Power Series Expansion of Functions ......................................................................................... 6-37
Taylor and Maclaurin Series....................................................................................................... 6-40
Summary .................................................................................................................................... 6-47
Exercises..................................................................................................................................... 6-50
Solutions to Exercises ................................................................................................................. 6-52
Chapter 7
Finite Differences and Interpolation
Divided Differences ...................................................................................................................... 7-1
Factorial Polynomials.................................................................................................................... 7-6
Antidifferences........................................................................................................................... 7-11
Newton’s Divided Difference Interpolation Method ................................................................. 7-15
Lagrange’s Interpolation Method ............................................................................................... 7-18
Gregory-Newton Forward Interpolation Method....................................................................... 7-19
Gregory-Newton Backward Interpolation Method .................................................................... 7-20
Interpolation with MATLAB..................................................................................................... 7-23
Summary .................................................................................................................................... 7-37
Exercises..................................................................................................................................... 7-42
Solutions to Exercises ................................................................................................................. 7-43
Chapter 8
Linear and Parabolic Regression
Curve Fitting................................................................................................................................ 8-1
Linear Regression......................................................................................................................... 8-2
Parabolic Regression ..................................................................................................................... 8-7
Regression with Power Series Approximations .......................................................................... 8-14
Summary .................................................................................................................................... 8-24Exercises .................................................................................................................................... 8-26
Solutions to Exercises................................................................................................................. 8-28
Chapter 9
Solution of Differential Equations by Numerical Methods
Taylor Series Method................................................................................................................... 9-1
Runge-Kutta Method................................................................................................................... 9-5
Adams’ Method......................................................................................................................... 9-13
Milne’s Method .......................................................................................................................... 9-16
Summary.................................................................................................................................... 9-17
Exercises .................................................................................................................................... 9-20
Solutions to Exercises................................................................................................................. 9-21
Chapter 10
Integration by Numerical Methods
The Trapezoidal Rule................................................................................................................. 10-1
Simpson’s Rule ........................................................................................................................... 10-6
Summary.................................................................................................................................. 10-13
Exercises .................................................................................................................................. 10-15
Solution to Exercises ................................................................................................................ 10-16
Chapter 11
Difference Equations
Definition, Solutions, and Applications..................................................................................... 11-1
Fibonacci Numbers .................................................................................................................... 11-7
Summary.................................................................................................................................. 11-10
Exercises .................................................................................................................................. 11-13
Solutions to Exercises............................................................................................................... 11-14
Chapter 12
Partial Fraction Expansion
Partial Fraction Expansion.........................................................................................................12-1
Alternate Method of Partial Fraction Expansion ....................................................................12-13
Summary..................................................................................................................................12-18
Exercises ..................................................................................................................................12-21
Solutions to Exercises...............................................................................................................12-22Chapter 13
The Gamma and Beta Functions and Distributions
The Gamma Function ................................................................................................................ 13-1
The Gamma Distribution ......................................................................................................... 13-15
The Beta Function.................................................................................................................... 13-17
The Beta Distribution............................................................................................................... 13-20
Summary .................................................................................................................................. 13-21
Exercises................................................................................................................................... 13-24
Solutions to Exercises ............................................................................................................... 13-25
Chapter 14
Orthogonal Functions and Matrix Factorizations
Orthogonal Functions ................................................................................................................14-1
Orthogonal Trajectories .............................................................................................................14-2
Orthogonal Vectors....................................................................................................................14-4
The Gram-Schmidt Orthogonalization Procedure .....................................................................14-7
The LU Factorization.................................................................................................................14-9
The Cholesky Factorization .....................................................................................................14-15
The QR Factorization...............................................................................................................14-17
Singular Value Decomposition ................................................................................................14-20
Summary.................................................................................................................................14-21
Exercises .................................................................................................................................14-23
Solutions to Exercises ..............................................................................................................14-25
Chapter 15
Bessel, Legendre, and Chebyshev Functions
The Bessel Function ................................................................................................................... 15-1
Legendre Functions .................................................................................................................. 15-10
Laguerre Polynomials................................................................................................................ 15-20
Chebyshev Polynomials ............................................................................................................ 15-21
Summary .................................................................................................................................. 15-26
Exercises................................................................................................................................... 15-32
Solutions to Exercises ............................................................................................................... 15-33Chapter 16
Optimization Methods
Linear Programming................................................................................................................... 16-1
Dynamic Programming............................................................................................................... 16-4
Network Analysis ..................................................................................................................... 16-14
Summary.................................................................................................................................. 16-19
Exercises .................................................................................................................................. 16-20
Solutions to Exercises............................................................................................................... 16-22
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Applied Econometrics using MATLAB
http://www.pinggu.org/bbs/thread-153232-1-1.html
Risk Analysis in Finance and Insurance
http://www.pinggu.org/bbs/thread-153240-1-1.html
Financial and Actuarial Statistics An Introduction
http://www.pinggu.org/bbs/thread-153242-1-1.html
Regression Models for Categorical Dependent Variables Using STATA
http://www.pinggu.org/bbs/thread-154915-1-1.html
The Mathematics of Money Management Risk Analysis Techniques for Traders
http://www.pinggu.org/bbs/thread-159522-1-1.html
Introduction to Statistics Through Resampling Methods and Microsoft Office Excel
http://www.pinggu.org/bbs/thread-159531-1-1.html
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:Numerical Analysis using Matlab and Spreadsheet
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_matlabruanjianpeixun_160747_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。