【下载】MATLAB Neural Networks In Finance-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 软件培训>>

Matlab软件培训

>>

【下载】MATLAB Neural Networks In Finance

【下载】MATLAB Neural Networks In Finance

发布:Senyart | 分类:Matlab软件培训

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

获取电子版《CDA一级教材》

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

以下是简单介绍NEURALNETWORKSINFINANCE:GainingPredictiveEdgeintheMarketToorderthistitle,andformoreinformation,clickhereByPaulMcNelis,RobertBendheimProfessorofInternationalEconomicandFinancialPolicyatF ...
免费学术公开课,扫码加入




以下是简单介绍

NEURAL NETWORKS IN FINANCE:Gaining Predictive Edge in the Market
To order this title, and for more information, click here

By
Paul McNelis, Robert Bendheim Professor of International Economic and Financial Policy at Fordham University Graduate School of Business. Professor of Economics at Georgetown University until 2004.

Included in series
AP Advanced Finance,

Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong.

Audience
Upper division undergraduates and MBA students, as well as the rapidly growing number of financial engineering programs, whose curricula emphasize quantitative applications in financial economics and markets

Contents
Preface 1 Introduction 1.1 Forecasting, Classification and Dimensionality Reduction 1.2 Synergies 1.3 The Interface Problems 1.4 Plan of the Book Econometric Foundations 2 What Are Neural Networks 2.1 Linear Regression Model 2.2 GARCH Nonlinear Models 2.2.1 Polynomial Approximation 2.2.2 Orthogonal Polynomials 2.3 Model Typology 2.4 What Is A Neural Network 2.4.1 Feedforward Networks 2.4.2 Squasher Functions 2.4.3 Radial Basis Functions 2.4.4 Ridgelet Networks 2.4.5 Jump Connections 2.4.6 Multilayered Feedforward Networks 2.4.7 Recurrent Networks 2.4.8 Networks with Multiple Outputs 2.5 Neural Network Smooth-Transition Regime-Switching Models 2.5.1 Smooth Transition Regime Switching Models 2.5.2 Neural Network Extensions 2.6 Nonlinear Principal Components: \ Intrinsic Dimensionality 2.6.1 Linear Principal Components 2.6.2 Nonlinear Principal Components 2.6.3 Application to Asset Pricing 2.7 Neural Networks and Discrete Choice 2.7.1 Discriminant Analysis 2.7.2 Logit Regression 2.7.3 Probit Regression 2.7.4 Weibull Regression 2.7.5 Neural Network Models for Discrete Choice 2.7.6 Models with Multinomial Ordered Choice Criticism and Data Mining 2.9 Conclusion 2.9.1 Matlab Program Notes 2.9.2 Suggested Exercises 3 Estimation of a Network with Evolutionary Computation 3.1 Data Preprocessing 3.1.1 Stationarity: Dickey-Fuller Test 3.1.2 Seasonal Adjustment: Correction for Calendar Effects 3.1.3 Scaling of Data 3.2 The Nonlinear Estimation Problem 3.2.1 Local Gradient-Based Search: \ The Quasi- Backpropagation 46 Simulated Annealing 48 3.2.3 Evolutionary Stochastic Search: The Genetic Algorithm Population creation Selection Crossover Mutation Election tournament Elitism Convergence 3.2.4 Evolutionary Genetic Algorithms 3.2.5 Hybridization: Coupling Gradient- and Genetic Search Methods 3.3 Repeated Estimation and Thick Models 3.4 Matlab Examples: Numerical Performance 53 3.4.1 Numerical Optimization 3.4.2 Approximation with Networks 54 3.5 Conclusion 3.5.1 Matlab Program Notes 3.5.2 Suggested Exercises 4 Evaluation of Network Estimation 4.1 In-Sample Criteria 4.1.1 Goodness of Fit Measure 4.1.2 Hannan-Quinn Information Criterion 4.1.3 Serial Independence and Homoskedasticity: and McLeod-Li Tests 4.1.4 Symmetry Normality 4.1.6 Neural Network Test for Neglected Nonlinearity: Lee-White-Granger Test 4.1.7 Brock-Deckert-Scheinkman Test for Nonlinear Patterns 4.1.8 Summary of in-sample criteria 4.1.9 Matlab Example 4.2 Out-of-Sample Criteria 4.2.1 Recursive Methodology 4.2.2 Root Mean Squared Error Statistic 4.2.3 Diebold-Mariano Test for Out of Sample Errors 4.2.4 Harvey, Leybourne, and Newbold "Size Correction" of Diebold-Mariano Test 4.2.5 Out-of-Sample Comparison with Nested Models 4.2.6 Success Ratio for Sign Predictions: Directional Accuracy 4.2.7 Predictive Stochastic\ Complexity subsection \numberline 4.2.8 Cross-Validation and the Method 69 How Large for Predictive Accuracy 4.3 Interpretive Criteria and Significance of Results 4.3.1 Analytic Derivatives 4.3.2 Finite Differences 4.3.3 Does It Matter 4.3.4 Matlab Example: Analytic and Finite Differences 4.3.5 Bootstrapping for Assessing Significance 4.4 Implementation Strategy 4.5 Conclusion 4.5.1 Matlab Program Notes 4.5.2 Suggested Exercises 1em Applications and Examples 5 Estimation and Forecasting with Artificial Data 5.1 Introduction 5.2 Stochastic Chaos Model 5.2.1 In-Sample Performance 5.2.2 Out-of-Sample Performance 5.3 Stochastic Volatility/Jump Diffusion Model 5.3.1 In-Sample Performance 5.3.2 Out-of-Sample Performance 5.4 The Markov Regime Switching Model 5.4.1 In-Sample Performance 5.4.2 Out-of-Sample Performance 5.5 VRS Model 5.5.1 In-Sample Performance 5.6 Distorted Long Memory Model 5.6.1 In-Sample Performance 5.6.2 Out-of-Sample Performance 5.7 BSOP Model: Implied Volatility Forecasting 5.7.1 In-Sample Performance 5.7.2 Out-of-Sample Performance 5.8 Conclusion 5.8.1 Matlab Program Notes 5.8.2 Suggested Exercises 6 Times Series: Examples from Industry and Finance 6.1 Forecasting Production in the Automotive Industry 6.1.1 The Data 6.1.2 Models of Quantity Adjustment 6.1.3 In-Sample Performance 6.1.4 Out-of-Sample Performance 6.1.5 Interpretation of Results 6.2 Corporate Bonds: Which Spreads? 110 6.2.1 The Data 6.2.2 A Model for the Adjustment of Spreads In-Sample Performance 6.2.4 Out-of-Sample Performance 6.2.5 Interpretation of Results 6.3 Conclusion 6.3.1 Matlab Program Notes 6.3.2 Suggested Exercises 7 Inflation and Deflation: Hong Kong and Japan 7.1 Hong Kong 7.1.1 The Data 7.1.2 Model Specification 7.1.3 In-Sample Performance 7.1.4 Out-of-Sample Performance 7.1.5 Interpretation of Results 7.2 Japan 7.2.1 The Data 7.2.2 Model Specification 7.2.3 In-Sample Performance 7.2.4 Out-of-Sample Performance 7.2.5 Interpretation of Results 7.3 Conclusion 7.3.1 Matlab Program Notes 7.3.2 Suggested Exercises 8 Classification: \ Credit Card Default and Bank Failures 8.1 Credit Card Risk 8.1.1 The Data 8.1.2 In-Sample Performance 8.1.3 Out-of-Sample Performance 8.1.4 Interpretation of Results 8.2 Banking Intervention 8.2.1 The Data 8.2.2 In-Sample Performance 8.2.3 Out-of-Sample Performance 8.2.4 Interpretation of Results 8.3 Conclusion 8.3.1 Matlab Program Notes 8.3.2 Suggested Exercises 9 Dimensionality Reduction and Implied Volatility Forecasting 9.1 Hong Kong 9.1.1 The Data 9.1.2 In-Sample Performance 9.1.3 Out-of-Sample Performance 9.2 United States 9.2.1 The Data 9.2.2 In-Sample Performance 9.2.3 Out-of-Sample Performance 9.3 Conclusion 9.3.1 Matlab Program Notes 9.3.2 Suggested Exercises


「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-231540-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
数据分析师 人大经济论坛 大学 专业 手机版
联系客服
值班时间:工作日(9:00--18:00)