Applied Analytics Using SAS Enterprise Miner 5-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 软件培训>>

SAS软件培训

>>

Applied Analytics Using SAS Enterprise Miner 5

Applied Analytics Using SAS Enterprise Miner 5

发布:zhangyiduo | 分类:SAS软件培训

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

获取电子版《CDA一级教材》

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

【书名】AppliedAnalyticsUsingSAS®EnterpriseMiner™5CourseNotes【作者】SASPublishing【出版社】SASInstitute【版本】1st【出版日期】2007【文件格式】PDF【文件大小】17.6MB【页数】597【ISBN出版号】 ...
免费学术公开课,扫码加入


【书名】 Applied Analytics Using SAS® Enterprise Miner™ 5 Course Notes
【作者】SAS Publishing
【出版社】SAS Institute
【版本】1st
【出版日期】2007
【文件格式】PDF
【文件大小】17.6MB
【页数】597
【ISBN出版号】978-1-59994-515-6
【资料类别】笔记
【市面定价】不清楚
【扫描版还是影印版】清晰,非扫描,也非影印
【是否缺页】无
【关键词】SAS Enterprise Miner ,Data Mining
【内容简介】经典的SAS Course Notes, SAS 内部的资料,压缩后11.1MB。
【目录】
Table of Contents
Course Description....................................................................................................................vii
Prerequisites ..............................................................................................................................viii
Chapter 1 Introduction .......................................................................................... 1-1
1.1 Introduction to SAS Enterprise Miner .............................................................................1-3
Chapter 2 Accessing and Assaying Prepared Data ............................................ 2-1
2.1 Introduction.....................................................................................................................2-3
2.2 Creating a SAS Enterprise Miner Project and Diagram...................................................2-7
2.3 Defining a Data Source..................................................................................................2-13
2.4 Exploring a Data Source ................................................................................................2-21
2.5 Chapter Summary ..........................................................................................................2-49
Chapter 3 Introduction to Pattern Discovery....................................................... 3-1
3.1 Introduction.....................................................................................................................3-3
3.2 Cluster Analysis ...............................................................................................................3-9
3.3 Market Basket Analysis (Self-Study).............................................................................3-56
3.4 Chapter Summary ..........................................................................................................3-80
3.5 Solutions to Exercises....................................................................................................3-82
Chapter 4 Introduction to Predictive Modeling: Decision Trees........................ 4-1
4.1 Introduction.....................................................................................................................4-3
4.2 Cultivating Decision Trees.............................................................................................4-36
4.3 Pruning a Decision Tree.................................................................................................4-60
4.4 Autonomous Tree Growth..............................................................................................4-87
4.5 Autonomous Tree Growth Options (Self-Study) ...........................................................4-92
4.6 Chapter Summary ........................................................................................................4-105
4.7 Solutions to Exercises..................................................................................................4-107
Chapter 5 Introduction to Predictive Modeling: Regressions ........................... 5-1
5.1 Introduction.....................................................................................................................5-3
5.2 Selecting Regression Inputs...........................................................................................5-24
5.3 Optimizing Regression Complexity...............................................................................5-33
5.4 Transforming Inputs.......................................................................................................5-40
5.5 Categorical Inputs ..........................................................................................................5-52
5.6 Polynomial Regressions.................................................................................................5-60
5.7 Chapter Summary ..........................................................................................................5-76
5.8 Solutions to Exercises....................................................................................................5-78
Chapter 6 Introduction to Predictive Modeling: Neural Networks and
Other Modeling Tools........................................................................... 6-1
6.1 Introduction.....................................................................................................................6-3
6.2 Input Selection ...............................................................................................................6-18
6.3 Stopped Training............................................................................................................6-22
6.4 Other Modeling Tools (Self-Study) ...............................................................................6-43
6.5 Chapter Summary ..........................................................................................................6-51
6.6 Solutions to Exercises....................................................................................................6-52
Chapter 7 Model Assessment ............................................................................... 7-1
7.1 Introduction.....................................................................................................................7-3
7.2 Model Fit Statistics ..........................................................................................................7-4
7.3 Statistical Graphics ........................................................................................................7-10
7.4 Adjusting for Separate Sampling ...................................................................................7-27
7.5 Profit Matrices ...............................................................................................................7-40
7.6 Chapter Summary ..........................................................................................................7-53
7.7 Solutions to Exercises....................................................................................................7-55
Chapter 8 Model Implementation.......................................................................... 8-1
8.1 Introduction.....................................................................................................................8-3
8.2 Internally Scored Data Sets..............................................................................................8-4
8.3 Score Code Modules......................................................................................................8-16
8.4 Chapter Summary ..........................................................................................................8-24
Chapter 9 Special Topics....................................................................................... 9-1
9.1 Introduction.....................................................................................................................9-3
9.2 Ensemble Models.............................................................................................................9-4
9.3 Variable Selection ............................................................................................................9-9
9.4 Categorical Input Consolidation ....................................................................................9-16
9.5 Surrogate Models...........................................................................................................9-22
Appendix A Case Studies........................................................................................ A-1
A.1 Banking Segmentation Case Study .................................................................................A-3
A.2 Web Site Usage Associations Case Study .....................................................................A-15
A.3 Credit Risk Case Study .................................................................................................A-20
A.4 Enrollment Management Case Study............................................................................A-36
Appendix B References ........................................................................................... B-1
B.1 References...................................................................................................................... B-3
Appendix C Index ..................................................................................................... C-1
【原创书评】这本书的内容还算比较实用,较好地结合了SAS和数据挖掘,里面图文并茂,是不可多得的好教程。

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-398000-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
数据分析师 人大经济论坛 大学 专业 手机版
联系客服
值班时间:工作日(9:00--18:00)