SAS时间序列分析原版英文书SAS® for Forecasting Time Series, Second Edition-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 软件培训>>

SAS软件培训

>>

SAS时间序列分析原版英文书SAS® for Forecasting Time Series, Second Edition

SAS时间序列分析原版英文书SAS® for Forecasting Time Series, Second Edition

发布:dahai_yu2003 | 分类:SAS软件培训

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

获取电子版《CDA一级教材》

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

共418页Contents1.1Introduction11.2AnalysisMethodsandSAS/ETSSoftware21.2.1Options21.2.2HowSAS/ETSSoftwareProceduresInterrelate41.3SimpleModels:Regression61.3.1LinearRegression61.3.2HighlyRegularSeasona ...
免费学术公开课,扫码加入


共418页
Contents

1.1 Introduction 1
1.2 Analysis Methods and SAS/ETS Software 2
1.2.1 Options 2
1.2.2 How SAS/ETS Software Procedures Interrelate 4
1.3 Simple Models: Regression 6
1.3.1 Linear Regression 6
1.3.2 Highly Regular Seasonality 13
1.3.3 Regression with Transformed Data 21
Chapter 2 Simple Models: Autoregression 27
2.1 Introduction 27
2.1.1 Terminology and Notation 27
2.1.2 Statistical Background 28
2.2 Forecasting 29
2.2.1 Forecasting with PROC ARIMA 30
2.2.2 Backshift Notation B for Time Series 40
2.2.3 Yule-Walker Equations for Covariances 41
2.3 Fitting an AR Model in PROC REG 45
Chapter 3 The General ARIMA Model49
3.1 Introduction 49
3.1.1 Statistical Background 49
3.1.2 Terminology and Notation 50
3.2 Prediction 51
3.2.1 One-Step-Ahead Predictions 51
3.2.2 Future Predictions 52
3.3 Model Identification 55
3.3.1 Stationarity and Invertibility 55
3.3.2 Time Series Identification 56
3.3.3 Chi-Square Check of Residuals 79
3.3.4 Summary of Model Identification 79
iv Contents
3.4 Examples and Instructions 80
3.4.1 IDENTIFY Statement for Series 1–8 81
3.4.2 Example: Iron and Steel Export Analysis 90
3.4.3 Estimation Methods Used in PROC ARIMA 95
3.4.4 ESTIMATE Statement for Series 8 97
3.4.5 Nonstationary Series 102
3.4.6 Effect of Differencing on Forecasts 104
3.4.7 Examples: Forecasting IBM Series and Silver Series 105
3.4.8 Models for Nonstationary Data 113
3.4.9 Differencing to Remove a Linear Trend 123
3.4.10 Other Identification Techniques 128
3.5 Summary 140
Chapter 4 The ARIMA Model: Introductory Applications 143
4.1 Seasonal Time Series 143
4.1.1 Introduction to Seasonal Modeling 143
4.1.2 Model Identification 145
4.2 Models with Explanatory Variables 164
4.2.1 Case 1: Regression with Time Series Errors 164
4.2.2 Case 1A: Intervention 165
4.2.3 Case 2: Simple Transfer Function 165
4.2.4 Case 3: General Transfer Function 166
4.2.5 Case 3A: Leading Indicators 166
4.2.6 Case 3B: Intervention 167
4.3 Methodology and Example 167
4.3.1 Case 1: Regression with Time Series Errors 167
4.3.2 Case 2: Simple Transfer Functions 179
4.3.3 Case 3: General Transfer Functions 183
4.3.4 Case 3B: Intervention 213
4.4 Further Examples 223
4.4.1 North Carolina Retail Sales 223
4.4.2 Construction Series Revisited 231
4.4.3 Milk Scare (Intervention) 233
4.4.4 Terrorist Attack 237
Chapter 5 The ARIMA Model: Special Applications 239
5.1 Regression with Time Series Errors and Unequal Variances 239
5.1.1 Autoregressive Errors 239
5.1.2 Example: Energy Demand at a University 241
5.1.3 Unequal Variances 245
5.1.4 ARCH, GARCH, and IGARCH for Unequal Variances 249
5.2 Cointegration 256
5.2.1 Introduction 256
5.2.2 Cointegration and Eigenvalues 258
5.2.3 Impulse Response Function 260
Contents v
5.2.4 Roots in Higher-Order Models 260
5.2.5 Cointegration and Unit Roots 263
5.2.6 An Illustrative Example 265
5.2.7 Estimating the Cointegrating Vector 270
5.2.8 Intercepts and More Lags 273
5.2.9 PROC VARMAX 275
5.2.10 Interpreting the Estimates 277
5.2.11 Diagnostics and Forecasts 279
Chapter 6 State Space Modeling283
6.1 Introduction 283
6.1.1 Some Simple Univariate Examples 283
6.1.2 A Simple Multivariate Example 285
6.1.3 Equivalence of State Space and Vector ARMA Models 294
6.2 More Examples 298
6.2.1 Some Univariate Examples 298
6.2.2 ARMA(1,1) of Dimension 2 301
6.3 PROC STATESPACE 302
6.3.1 State Vectors Determined from Covariances 305
6.3.2 Canonical Correlations 305
6.3.3 Simulated Example 307
Chapter 7 Spectral Analysis 323
7.1 Periodic Data: Introduction 323
7.2 Example: Plant Enzyme Activity 324
7.3 PROC SPECTRA Introduced 326
7.4 Testing for White Noise 328
7.5 Harmonic Frequencies 330
7.6 Extremely Fast Fluctuations and Aliasing 334
7.7 The Spectral Density 335
7.8 Some Mathematical Detail (Optional Reading) 339
7.9 Estimating the Spectrum: The Smoothed Periodogram 340
7.10 Cross-Spectral Analysis 341
7.10.1 Interpreting Cross-Spectral Quantities 341
7.10.2 Interpreting Cross-Amplitude and Phase Spectra 344
7.10.3 PROC SPECTRA Statements 346
7.10.4 Cross-Spectral Analysis of the Neuse River Data 350
7.10.5 Details on Gain, Phase, and Pure Delay 354
vi Contents
Chapter 8 Data Mining and Forecasting 359
8.1 Introduction 359
8.2 Forecasting Data Model 360
8.3 The Time Series Forecasting System 362
8.4 HPF Procedure 368
8.5 Scorecard Development 375
8.6 Business Goal Performance Metrics 376
8.7 Graphical Displays 376
8.8 Goal-Seeking Model Development 381
8.9 Summary 383
References 385
Index389

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-471228-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
数据分析师 人大经济论坛 大学 专业 手机版
联系客服
值班时间:工作日(9:00--18:00)