关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
TOP热门关键词
Hereisseveralebook.1) AppliedEconometricsusingSASSystem2) AppliedEconometricsusingMATLAB======================(SASbook)Contents:PrefacexiAcknowledgmentsxv1IntroductiontoRegressio ...
免费学术公开课,扫码加入![]() |
1) Applied Econometrics using SAS System
2) Applied Econometrics using MATLAB
======================
(SAS book)
Contents:
Preface xi
Acknowledgments xv
1 Introduction to Regression Analysis 1
1.1 Introduction 1
1.2 Matrix Form of the Multiple Regression Model 3
1.3 Basic Theory of Least Squares 3
1.4 Analysis of Variance 5
1.5 The Frisch–Waugh Theorem 6
1.6 Goodness of Fit 6
1.7 Hypothesis Testing and Confidence Intervals 7
1.8 Some Further Notes 8
2 Regression Analysis Using Proc IML and Proc Reg 9
2.1 Introduction 9
2.2 Regression Analysis Using Proc IML 9
2.3 Analyzing the Data Using Proc Reg 12
2.4 Extending the Investment Equation Model to the Complete Data Set 14
2.5 Plotting the Data 15
2.6 Correlation Between Variables 16
2.7 Predictions of the Dependent Variable 18
2.8 Residual Analysis 21
2.9 Multicollinearity 24
3 Hypothesis Testing 27
3.1 Introduction 27
3.2 Using SAS to Conduct the General Linear Hypothesis 29
3.3 The Restricted Least Squares Estimator 31
3.4 Alternative Methods of Testing the General Linear Hypothesis 33
3.5 Testing for Structural Breaks in Data 38
3.6 The CUSUM Test 41
3.7 Models with Dummy Variables 45
vii
4 Instrumental Variables 52
4.1 Introduction 52
4.2 Omitted Variable Bias 53
4.3 Measurement Errors 54
4.4 Instrumental Variable Estimation 55
4.5 Specification Tests 61
5 Nonspherical Disturbances and Heteroscedasticity 70
5.1 Introduction 70
5.2 Nonspherical Disturbances 71
5.3 Detecting Heteroscedasticity 72
5.4 Formal Hypothesis Tests to Detect Heteroscedasticity 74
5.5 Estimation of b Revisited 80
5.6 Weighted Least Squares and FGLS Estimation 84
5.7 Autoregressive Conditional Heteroscedasticity 87
6 Autocorrelation 93
6.1 Introduction 93
6.2 Problems Associated with OLS Estimation Under Autocorrelation 94
6.3 Estimation Under the Assumption of Serial Correlation 95
6.4 Detecting Autocorrelation 96
6.5 Using SAS to Fit the AR Models 101
7 Panel Data Analysis 110
7.1 What is Panel Data? 110
7.2 Panel Data Models 111
7.3 The Pooled Regression Model 112
7.4 The Fixed Effects Model 113
7.5 Random Effects Models 123
8 Systems of Regression Equations 132
8.1 Introduction 132
8.2 Estimation Using Generalized Least Squares 133
8.3 Special Cases of the Seemingly Unrelated Regression Model 133
8.4 Feasible Generalized Least Squares 134
9 Simultaneous Equations 142
9.1 Introduction 142
9.2 Problems with OLS Estimation 142
9.3 Structural and Reduced Form Equations 144
9.4 The Problem of Identification 145
9.5 Estimation of Simultaneous Equation Models 147
9.6 Hausman’s Specification Test 151
10 Discrete Choice Models 153
10.1 Introduction 153
10.2 Binary Response Models 154
10.3 Poisson Regression 163
viii CONTENTS
11 Duration Analysis 169
11.1 Introduction 169
11.2 Failure Times and Censoring 169
11.3 The Survival and Hazard Functions 170
11.4 Commonly Used Distribution Functions in Duration Analysis 178
11.5 Regression Analysis with Duration Data 186
12 Special Topics 202
12.1 Iterative FGLS Estimation Under Heteroscedasticity 202
12.2 Maximum Likelihood Estimation Under Heteroscedasticity 202
12.3 Harvey’s Multiplicative Heteroscedasticity 204
12.4 Groupwise Heteroscedasticity 205
12.5 Hausman–Taylor Estimator for the Random Effects Model 210
12.6 Robust Estimation of Covariance Matrices in Panel Data 219
12.7 Dynamic Panel Data Models 220
12.8 Heterogeneity and Autocorrelation in Panel Data Models 224
12.9 Autocorrelation in Panel Data 227
Appendix A Basic Matrix Algebra for Econometrics 237
A.1 Matrix Definitions 237
A.2 Matrix Operations 238
A.3 Basic Laws of Matrix Algebra 239
A.4 Identity Matrix 240
A.5 Transpose of a Matrix 240
A.6 Determinants 241
A.7 Trace of a Matrix 241
A.8 Matrix Inverses 242
A.9 Idempotent Matrices 243
A.10 Kronecker Products 244
A.11 Some Common Matrix Notations 244
A.12 Linear Dependence and Rank 245
A.13 Differential Calculus in Matrix Algebra 246
A.14 Solving a System of Linear Equations in Proc IML 248
Appendix B Basic Matrix Operations in Proc IML 249
B.1 Assigning Scalars 249
B.2 Creating Matrices and Vectors 249
B.3 Elementary Matrix Operations 250
B.4 Comparison Operators 251
B.5 Matrix-Generating Functions 251
B.6 Subset of Matrices 251
B.7 Subscript Reduction Operators 251
B.8 The Diag and VecDiag Commands 252
B.9 Concatenation of Matrices 252
B.10 Control Statements 252
B.11 Calculating Summary Statistics in Proc IML 253
Appendix C Simulating the Large Sample Properties of the OLS Estimators 255
Appendix D Introduction to Bootstrap Estimation 262
D.1 Introduction 262
D.2 Calculating Standard Errors 264
CONTENTS ix
D.3 Bootstrapping in SAS 264
D.4 Bootstrapping in Regression Analysis 265
======================
(Matlab book)
Contents
1 Introduction 1
2 Regression using MATLAB 5
2.1 Design of the regression library . . . . . . . . . . . . . . . . . 6
2.2 The ols function . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Selecting a least-squares algorithm . . . . . . . . . . . . . . . 12
2.4 Using the results structure . . . . . . . . . . . . . . . . . . . . 17
2.5 Performance pro¯ling the regression toolbox . . . . . . . . . . 28
2.6 Using the regression library . . . . . . . . . . . . . . . . . . . 30
2.6.1 A Monte Carlo experiment . . . . . . . . . . . . . . . 31
2.6.2 Dealing with serial correlation . . . . . . . . . . . . . 32
2.6.3 Implementing statistical tests . . . . . . . . . . . . . . 38
2.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 41
Chapter 2 Appendix 42
3 Utility Functions 45
3.1 Calendar function utilities . . . . . . . . . . . . . . . . . . . . 45
3.2 Printing and plotting matrices . . . . . . . . . . . . . . . . . 49
3.3 Data transformation utilities . . . . . . . . . . . . . . . . . . 65
3.4 Gauss functions . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Wrapper functions . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 76
Chapter 3 Appendix 77
4 Regression Diagnostics 80
4.1 Collinearity diagnostics and procedures . . . . . . . . . . . . 80
4.2 Outlier diagnostics and procedures . . . . . . . . . . . . . . . 94
4.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 100
vi
CONTENTS vii
Chapter 4 Appendix 101
5 VAR and Error Correction Models 103
5.1 VAR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Error correction models . . . . . . . . . . . . . . . . . . . . . 113
5.3 Bayesian variants . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1 Theil-Goldberger estimation of these models . . . . . 138
5.4 Forecasting the models . . . . . . . . . . . . . . . . . . . . . . 139
5.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 145
Chapter 5 Appendix 148
6 Markov Chain Monte Carlo Models 151
6.1 The Bayesian Regression Model . . . . . . . . . . . . . . . . . 154
6.2 The Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.1 Monitoring convergence of the sampler . . . . . . . . . 159
6.2.2 Autocorrelation estimates . . . . . . . . . . . . . . . . 163
6.2.3 Raftery-Lewis diagnostics . . . . . . . . . . . . . . . . 163
6.2.4 Geweke diagnostics . . . . . . . . . . . . . . . . . . . . 165
6.3 A heteroscedastic linear model . . . . . . . . . . . . . . . . . 169
6.4 Gibbs sampling functions . . . . . . . . . . . . . . . . . . . . 175
6.5 Metropolis sampling . . . . . . . . . . . . . . . . . . . . . . . 184
6.6 Functions in the Gibbs sampling library . . . . . . . . . . . . 190
6.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 197
Chapter 6 Appendix 199
7 Limited Dependent Variable Models 204
7.1 Logit and probit regressions . . . . . . . . . . . . . . . . . . . 206
7.2 Gibbs sampling logit/probit models . . . . . . . . . . . . . . . 211
7.2.1 The probit g function . . . . . . . . . . . . . . . . . . 218
7.3 Tobit models . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.4 Gibbs sampling Tobit models . . . . . . . . . . . . . . . . . . 224
7.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 227
Chapter 7 Appendix 228
8 Simultaneous Equation Models 230
8.1 Two-stage least-squares models . . . . . . . . . . . . . . . . . 230
8.2 Three-stage least-squares models . . . . . . . . . . . . . . . . 235
8.3 Seemingly unrelated regression models . . . . . . . . . . . . . 240
CONTENTS viii
8.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 244
Chapter 8 Appendix 246
9 Distribution functions library 247
9.1 The pdf, cdf, inv and rnd functions . . . . . . . . . . . . . . . 248
9.2 The specialized functions . . . . . . . . . . . . . . . . . . . . 249
9.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 256
Chapter 9 Appendix 257
10 Optimization functions library 260
10.1 Simplex optimization . . . . . . . . . . . . . . . . . . . . . . . 261
10.1.1 Univariate simplex optimization . . . . . . . . . . . . 261
10.1.2 Multivariate simplex optimization . . . . . . . . . . . 268
10.2 EM algorithms for optimization . . . . . . . . . . . . . . . . . 269
10.3 Multivariate gradient optimization . . . . . . . . . . . . . . . 278
10.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 287
Chapter 10 Appendix 288
11 Handling sparse matrices 289
11.1 Computational savings with sparse matrices . . . . . . . . . . 289
11.2 Estimation using sparse matrix algorithms . . . . . . . . . . . 297
11.3 Gibbs sampling and sparse matrices . . . . . . . . . . . . . . 304
11.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 309
Chapter 11 Appendix 310
References 313
======================
It's really good book.
zgp480
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:Ebook_Applied Econometrics using SAS and .......
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_sasruanjianpeixun_827039_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



