摘要翻译:
修正一个数字域k。我们证明了K*-K*^2是K上的丢番图。这是由K[x]中的一个非常可分多项式P(x)在K*模平方中至多存在有限个a的定理导出的,从而使Y^2-Az^2=P(x)给出的二次丛x的Hasse原理存在Brauer-Manin障碍。
---
英文标题:
《The set of non-squares in a number field is diophantine》
---
作者:
Bjorn Poonen
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Fix a number field k. We prove that k* - k*^2 is diophantine over k. This is deduced from a theorem that for a nonconstant separable polynomial P(x) in k[x], there are at most finitely many a in k* modulo squares such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle X given by y^2 - az^2 = P(x).
---
PDF链接:
https://arxiv.org/pdf/0712.1785


雷达卡



京公网安备 11010802022788号







