楼主: nandehutu2022
539 0

[量化金融] 用死亡率衍生品对冲纯捐赠 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.2521
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-3-12 20:54:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
近年来,死亡衍生品市场开始发展,作为处理系统死亡风险的一种方式,系统死亡风险是人寿保险和年金合同中固有的。系统死亡风险是由于未来死亡强度的不确定发展,或{\IT危险率}。在本文中,我们发展了一个纯捐赠的定价理论,当套期保值与死亡率远期是允许的。与纯禀赋相关的危险率和预测死亡率的参考危险率是相关的,并用扩散过程建模。我们通过假设发行公司用远期死亡率对冲其合同,并要求以预先指定的瞬时夏普比率的形式对死亡率风险的不可对冲部分进行补偿,从而对纯捐赠进行定价。本文的主要结果是,当合同数目接近无穷大时,每合同的价值解一个线性偏微分方程。可以将极限价格表示为等价鞅测度下的期望。另一个重要的结果是,与没有套期保值的价格相比,用死亡率远期套期保值可能会提高或降低这种纯捐赠的价格,正如Bayraktar等人所确定的那样。[2009]。参考死亡率风险的市场价格和两个投资组合之间的相关性共同决定了套期保值的成本。我们用数值例子证明了我们的结果。
---
英文标题:
《Hedging Pure Endowments with Mortality Derivatives》
---
作者:
Ting Wang and Virginia R. Young
---
最新提交年份:
2010
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Pricing of Securities        证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--

---
英文摘要:
  In recent years, a market for mortality derivatives began developing as a way to handle systematic mortality risk, which is inherent in life insurance and annuity contracts. Systematic mortality risk is due to the uncertain development of future mortality intensities, or {\it hazard rates}. In this paper, we develop a theory for pricing pure endowments when hedging with a mortality forward is allowed. The hazard rate associated with the pure endowment and the reference hazard rate for the mortality forward are correlated and are modeled by diffusion processes. We price the pure endowment by assuming that the issuing company hedges its contract with the mortality forward and requires compensation for the unhedgeable part of the mortality risk in the form of a pre-specified instantaneous Sharpe ratio. The major result of this paper is that the value per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can represent the limiting price as an expectation under an equivalent martingale measure. Another important result is that hedging with the mortality forward may raise or lower the price of this pure endowment comparing to its price without hedging, as determined in Bayraktar et al. [2009]. The market price of the reference mortality risk and the correlation between the two portfolios jointly determine the cost of hedging. We demonstrate our results using numerical examples.
---
PDF链接:
https://arxiv.org/pdf/1011.0248
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:死亡率 衍生品 Quantitative Differential Applications 捐赠 risk market 死亡率 价值

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-23 07:57