《Multi-Asset Option Pricing with Exponential L\\\'evy Processes and the
Mellin Transform》
---
作者:
D.J. Manuge
---
最新提交年份:
2013
---
英文摘要:
Exponential L\\\'evy processes have been used for modelling financial derivatives because of their ability to exhibit many empirical features of markets. Using their multidimensional analogue, a general analytic pricing formula is obtained, allowing for the direct valuation of multi-asset options on $n \\in \\z^+$ risky assets. By providing alternate expressions for multi-asset option payoffs, the general pricing formula can reduce to many popular cases, including American basket options which are considered herein. This work extends previous results of basket options to dimensions $n \\geq 3$ and more generally, to payoff functions that satisfy Lipschitz continuity.
---
中文摘要:
指数Lêevy过程被用于金融衍生品建模,因为它们能够展示市场的许多经验特征。利用它们的多维模拟,得到了一个通用的分析定价公式,允许对$n\\in\\z^+$风险资产的多资产期权进行直接估值。通过提供多资产期权收益的替代表达式,通用定价公式可以简化为许多常见情况,包括本文考虑的美式篮子期权。这项工作将以前的篮子期权结果扩展到维度$n\\geq 3$,更一般地,扩展到满足Lipschitz连续性的支付函数。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->
Multi-Asset_Option_Pricing_with_Exponential_Lévy_Processes_and_the_Mellin_Transform.pdf
(76.7 KB)


雷达卡



京公网安备 11010802022788号







