《A First Option Calibration of the GARCH Diffusion Model by a PDE Method》
---
作者:
Yiannis A. Papadopoulos and Alan L. Lewis
---
最新提交年份:
2018
---
英文摘要:
Time-series calibrations often suggest that the GARCH diffusion model could also be a suitable candidate for option (risk-neutral) calibration. But unlike the popular Heston model, it lacks a fast, semi-analytic solution for the pricing of vanilla options, perhaps the main reason why it is not used in this way. In this paper we show how an efficient finite difference-based PDE solver can effectively replace analytical solutions, enabling accurate option calibrations in less than a minute. The proposed pricing engine is shown to be robust under a wide range of model parameters and combines smoothly with black-box optimizers. We use this approach to produce a first PDE calibration of the GARCH diffusion model to SPX options and present some benchmark results for future reference.
---
中文摘要:
时间序列校准通常表明,GARCH扩散模型也可以是期权(风险中性)校准的合适候选者。但与流行的赫斯顿模型不同,它缺乏一个快速、半解析的解决方案来为普通期权定价,这可能是它没有以这种方式使用的主要原因。在本文中,我们展示了一个高效的基于有限差分的PDE解算器如何有效地替代解析解,从而在不到一分钟的时间内实现精确的选项校准。所提出的定价引擎在广泛的模型参数下表现出鲁棒性,并与黑盒优化器平滑结合。我们使用这种方法首次对SPX期权的GARCH扩散模型进行PDE校准,并给出一些基准结果,以供将来参考。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->
A_First_Option_Calibration_of_the_GARCH_Diffusion_Model_by_a_PDE_Method.pdf
(2.59 MB)


雷达卡



京公网安备 11010802022788号







