《Jumping VaR: Order Statistics Volatility Estimator for Jumps
Classification and Market Risk Modeling》
---
作者:
Luca Spadafora, Francesca Sivero, Nicola Picchiotti
---
最新提交年份:
2018
---
英文摘要:
This paper proposes a new integrated variance estimator based on order statistics within the framework of jump-diffusion models. Its ability to disentangle the integrated variance from the total process quadratic variation is confirmed by both simulated and empirical tests. For practical purposes, we introduce an iterative algorithm to estimate the time-varying volatility and the occurred jumps of log-return time series. Such estimates enable the definition of a new market risk model for the Value at Risk forecasting. We show empirically that this procedure outperforms the standard historical simulation method applying standard back-testing approach.
---
中文摘要:
在跳扩散模型的框架下,提出了一种新的基于顺序统计量的综合方差估计。模拟试验和经验试验都证实了该方法能够将综合方差从总过程二次方差中分离出来。出于实用目的,我们引入了一种迭代算法来估计对数收益时间序列的时变波动率和发生的跳跃。这种估计能够为风险价值预测定义新的市场风险模型。我们的经验表明,该方法优于应用标准回测方法的标准历史模拟方法。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->
Jumping_VaR:_Order_Statistics_Volatility_Estimator_for_Jumps_Classification_and_.pdf
(3.35 MB)


雷达卡



京公网安备 11010802022788号







