《From quadratic Hawkes processes to super-Heston rough volatility models
with Zumbach effect》
---
作者:
Aditi Dandapani, Paul Jusselin, Mathieu Rosenbaum
---
最新提交年份:
2021
---
英文摘要:
Using microscopic price models based on Hawkes processes, it has been shown that under some no-arbitrage condition, the high degree of endogeneity of markets together with the phenomenon of metaorders splitting generate rough Heston-type volatility at the macroscopic scale. One additional important feature of financial dynamics, at the heart of several influential works in econophysics, is the so-called feedback or Zumbach effect. This essentially means that past trends in returns convey significant information on future volatility. A natural way to reproduce this property in microstructure modeling is to use quadratic versions of Hawkes processes. We show that after suitable rescaling, the long term limits of these processes are refined versions of rough Heston models where the volatility coefficient is enhanced compared to the square root characterizing Heston-type dynamics. Furthermore the Zumbach effect remains explicit in these limiting rough volatility models.
---
中文摘要:
基于霍克斯过程的微观价格模型表明,在某些无套利条件下,市场的高度内生性以及元指令分裂现象在宏观尺度上产生了粗糙的赫斯顿型波动。金融动力学的另一个重要特征是所谓的反馈或祖巴赫效应,它是经济物理学中几部有影响力的著作的核心。这本质上意味着过去的收益趋势传达了有关未来波动性的重要信息。在微观结构建模中再现该特性的一种自然方法是使用霍克斯过程的二次型。我们表明,经过适当的重标度后,这些过程的长期极限是粗糙Heston模型的精化版本,其中波动系数比表征Heston型动力学的平方根更强。此外,祖姆巴赫效应在这些限制性粗糙波动率模型中仍然很明显。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
PDF下载:
-->
From_quadratic_Hawkes_processes_to_super-Heston_rough_volatility_models_with_Zum.pdf
(272.56 KB)


雷达卡



京公网安备 11010802022788号







