楼主: bobguy
1821 0

[原创博文] Kalman Filter Calls [推广有奖]

学科带头人

7%

还不是VIP/贵宾

-

威望
0
论坛币
14187 个
通用积分
28.9279
学术水平
344 点
热心指数
363 点
信用等级
228 点
经验
104882 点
帖子
1846
精华
0
在线时间
1608 小时
注册时间
2008-7-18
最后登录
2019-3-8

中级热心勋章

楼主
bobguy 发表于 2012-8-12 06:16:16 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
SAS provides Kalman filter calls that make MLE possible for Kalman filter parameters. Details follow the link below.

http://support.sas.com/documentation/cdl/en/imlug/59656/HTML/default/viewer.htm#timeseriesexpls_sect19.htm


Kalman Filter Subroutines    This section describes a collection of Kalman filtering and  smoothing subroutines for time series analysis; immediately  following are three examples using Kalman filtering subroutines.  The state space model is a method for  analyzing a wide range of time series models.  When the time series is represented by the state space  model (SSM), the Kalman filter is used for filtering,  prediction, and smoothing of the state vector.  The state space model is composed of the  measurement and transition equations.
The following Kalman filtering and smoothing  subroutines are supported:  
KALCVF performs covariance filtering and prediction. KALCVS performs fixed-interval smoothing. KALDFF performs diffuse covariance filtering and prediction. KALDFS performs diffuse fixed-interval smoothing.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:kalman filter calls call ALM collection describes following examples possible

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-7 13:22