证明比较蛮烦,我只举个例子,你可以类比着去弄
一般证明的思路有两种:
1)构建两个portfolio,证明其中一个无论在什么情况下都要比另一个价值大,或者至少相等)
2)假设不等式不成立,证明有套利机会
我就说左端那个不等式的一种情况:
我用第二种观方法,虽然繁琐,但是有trading的故事,因此比较容易懂
假设该不等式不成立即S0-K>C0-P0, 即 (C0-P0-S0+K)<0
如果你在市场当中观察到了这个关系,那么你现在可以构建这么一个portfolio.
1) short a put -P0
2) short a share of stock -S0
3) long a call +C0
4) invest the rest of money (P0+S0-C0) at r
The value of the portfolio now is V=0;
问题当中可以简化,因为没有dividend,call不会提前执行,因此只要考虑put (有dividened就是麻烦一些可以类比)
如果在0<t<T, t时刻put被exercise,是人家问你来exercise
1)pay K, get a share
2) use this share to close the short position in the stock
The portfolio's value now is:
C(t)+(P0+S0-C0)exp(rt)-K
=C(t)+(P0+S0-C0-Kexp(-rt))exp(rt)
because,
C0-P0-S0+K<0,
C0-P0-S0+Kexp(-rt)<0
P0+S0-C0-Kexp(-rt)>0
=C(t)+(P0+S0-C0-Kexp(-rt))exp(rt)>0
you start with a self financing portfolio V=0, end with a positive portfolio's value V>0
this is an arbitrage.
the same holds if the put is not exercised.
Hint, if have dividend, you have to consider put exe? not exe? call exe? not exe?
best,


雷达卡






京公网安备 11010802022788号







