楼主: ReneeBK
2643 4

[问答] Factorial ANOVA using SPSS GLM [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2014-4-10 05:33:54 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
I have 3 outcome scales (scale1,scale2,scale3). One categorical IV (A-4 levels) and one categorical Covariate (B-4 levels). I want to basically do an ANCOVA and make comparisons between adjusted A means. Does the following code do that?  

GLM scale1 scale2 scale3 BY A B
  /METHOD=SSTYPE(3)
  /INTERCEPT=INCLUDE
  /EMMEANS=TABLES(A) COMPARE ADJ(BONFERRONI)
  /PRINT=DESCRIPTIVE ETASQ
  /CRITERIA=ALPHA(.05)
  /DESIGN= A B.

(The A*B interaction was not significant.)

Also, I'm looking for a reference to this approach: treating a categorical covariate as a factor in the analysis.  I came across blocking in ANOVA, but no reference was provided. In Bruning & Kintz's Computational Handbook of Statistics this approach is referred to a Treatment X Level design.   

Any suggestions will be greatly appreciated.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Factorial factor Using ANOVA Facto addition interest control factors tables

沙发
ReneeBK 发表于 2014-4-10 05:38:08
If there is no interaction term in the model, the differences among the various levels of A will be the same at any and all levels of B--with no interaction, the effect of A does not depend on the level of B.

But you might try something like the following to see if you can produce the same EMMEANS as you get when you treat B as a fixed factor.

UNIANOVA scael1, scale2, scale3 BY A WITH bD1 bD2 bD3
  /METHOD=SSTYPE(3)
  /INTERCEPT=INCLUDE
  /EMMEANS=TABLES(A) WITH(bD1=1 bD2=0 bD3=0) COMPARE ADJ(BONFERRONI)
  /EMMEANS=TABLES(A) WITH(bD1=0 bD2=1 bD3=0) COMPARE ADJ(BONFERRONI)
  /EMMEANS=TABLES(A) WITH(bD1=0 bD2=0 bD3=1) COMPARE ADJ(BONFERRONI)
  /EMMEANS=TABLES(A) WITH(bD1=0 bD2=0 bD3=0) COMPARE ADJ(BONFERRONI)
  /PRINT=ETASQ
  /CRITERIA=ALPHA(.05)
  /DESIGN=bD1 bD2 bD3 A.

藤椅
ReneeBK 发表于 2014-4-10 05:39:13
Take a look at the 2013 edition of Cohen, Cohen, West & Aiken;
starting page 350. You can see some of this on books.google.com:
http://books.google.com/books?id=gkalyqTMXNEC&printsec=frontcover&dq=cohen+%22multiple+regression%22&hl=en&sa=X&ei=sLL3UprPIrSpsATjtoGoDQ&ved=0CD0Q6AEwAA#v=onepage&q=ANCOVA%20assumptions&f=false

-Mike Palij
New York University

板凳
ReneeBK 发表于 2014-4-10 05:40:49
Kirk's (2013) 4th edition of Experimental Design is another possibility though  his coverage of ANCOVA (chapter 13) is somewhat different from his earlier editions; see:
http://books.google.com/books?id=CYiqQDHRJVUC&printsec=frontcover&dq=kirk+%22experimental+design%22&hl=en&sa=X&ei=H8L3UvDNEYzMsQTaxYG4Dg&ved=0CDYQ6AEwAA#v=onepage&q=ANCOVA&f=false

I admit that though I have a copy of this edition, I haven't read this chapter.

报纸
ReneeBK 发表于 2014-4-10 05:47:32
http://psych.unl.edu/psycrs/971/factorial/fact_reminder.pdf

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-24 12:35