当use=“complete.obs”时,空值的地方会被casewise deletion( If use is "complete.obs" then missing values are handled by casewise deletion (and if there are no complete cases, that gives an error). )但计算出来的相关系数矩阵是完整的没有缺失值的,那么那些空值的地方的值是用什么方法填补的呢?
当use=“pairwise.complete.obs”计算结果和前面两个不一样(if use has the value "pairwise.complete.obs" then the correlation or covariance between each pair of variables is computed using all complete pairs of observations on those variables. This can result in covariance or correlation matrices which are not positive semi-definite, as well as NA entries if there are no complete pairs for that pair of variables. )但结果也是完整的。
For cov and cor one must either give a matrix or data frame for x or give both x and y.
The inputs must be numeric (as determined by is.numeric: logical values are also allowed for historical compatibility): the "kendall" and "spearman" methods make sense for ordered inputs but xtfrm can be used to find a suitable prior transformation to numbers.
var is just another interface to cov, where na.rm is used to determine the default for use when that is unspecified. If na.rm is TRUE then the complete observations (rows) are used (use = "na.or.complete") to compute the variance. Otherwise, by default use = "everything".
If use is "everything", NAs will propagate conceptually, i.e., a resulting value will be NA whenever one of its contributing observations is NA.
If use is "all.obs", then the presence of missing observations will produce an error. If use is "complete.obs" then missing values are handled by casewise deletion (and if there are no complete cases, that gives an error).
"na.or.complete" is the same unless there are no complete cases, that gives NA. Finally, if use has the value "pairwise.complete.obs" then the correlation or covariance between each pair of variables is computed using all complete pairs of observations on those variables. This can result in covariance or correlation matrices which are not positive semi-definite, as well as NA entries if there are no complete pairs for that pair of variables. For cov and var, "pairwise.complete.obs" only works with the "pearson" method. Note that (the equivalent of) var(double(0), use = *) gives NA for use = "everything" and "na.or.complete", and gives an error in the other cases.
The denominator n - 1 is used which gives an unbiased estimator of the (co)variance for i.i.d. observations. These functions return NA when there is only one observation (whereas S-PLUS has been returning NaN), and fail if x has length zero.
For cor(), if method is "kendall" or "spearman", Kendall's tau or Spearman's rho statistic is used to estimate a rank-based measure of association. These are more robust and have been recommended if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of completeness. Note that "spearman" basically computes cor(R(x), R(y)) (or cov(., .)) where R(u) := rank(u, na.last = "keep"). In the case of missing values, the ranks are calculated depending on the value of use, either based on complete observations, or based on pairwise completeness with reranking for each pair.
Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by using sweep(.., FUN = "/") twice. The cov2cor function is even a bit more efficient, and provided mostly for didactical reasons.