解: 令:
$P=x^2-y,Q=-x-\sin^2y,$
$\because \frac{\partial Q}{\partial x}=-1=\frac{\partial P}{\partial y},$
补上直线段$y=0,x=1$使之与$L$构成闭合回路$L'$。所求积分:
$\begin{align*}\int_L&=\oint_{L'}-\int_{y=0}-\int_{x=1}\\\\&=0-\int_{0}^{1}x^2dx+\int_{0}^{1}(1+\sin^2y)dy\\\\&=-\frac{1}{3}+\int_{0}^{1}(\frac{3}{2}-\frac{1}{2}\cos2y)dy\\\\&=\frac{7}{6}-\frac{1}{4}\sin2.
\end{align*}$


雷达卡
京公网安备 11010802022788号







