解:
$V=2\iiint_\Omega dV .$
$\Omega :0\leq z\leq \sqrt{4-x^2-y^2},$
$\begin{cases}
x &=r\cos \theta \\
y &=r\sin \theta
\end{cases}$
$|J|=r,-\frac{\pi}{2}\leq \theta \leq \frac{\pi}{2},0\leq r\leq 2.$
$\begin{align*}\therefore V&=2\iiint_\Omega dV\\\\&=2\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}d\theta \int_{0}^{2}rdr\int_{0}^{\sqrt{4-x^2-y^2}}dz\\\\&=2\pi\int_{0}^{2}r\sqrt{4-r^2}dr\\\\&=-\frac{2}{3}\pi\sqrt{(4-r^2)^3}|_0^2\\\\&=\frac{16}{3}\pi.
\end{align*}$


雷达卡
京公网安备 11010802022788号







