解:
$\because x_{n+2}=\sqrt{x_n^2-2ax_n+2a^2},$
$\Rightarrow x_{n+2}^2-a^2=(x_n^2-a)^2> 0,$
$\therefore x_{n+2}> a.$
$\because x_{n+2}^2-x_n^2=-2ax_n+2a^2=2a(a-x_n)< 0,$
$\therefore x_{n+2}< x_n.$
$\Rightarrow x_n\downarrow ,x_n> a.$极限存在。
设:
$\displaystyle \lim_{n \to \infty }x_n=l,$
$l^2=l^2-2al+2a^2,\Rightarrow l=a.$
$\therefore \displaystyle \lim_{n \to \infty }x_n=a.$


雷达卡
京公网安备 11010802022788号







