(第2小题有雷同,略)
证明:由已知,$f_n(x)$连续,有:
$\forall \varepsilon > 0,\exists \delta > 0,|x_n-x_0|< \delta ,s.t.$
$|f_n(x_n)-f_n(x_0)|< \frac{\varepsilon }{2},$
又因为$f_n(x)$一致收敛于$f(x)$,故有:
$\forall \varepsilon > 0,\exists N> 0,n> N,s.t.$
$|f_n(x_0)-f(x_0)|< \frac{\varepsilon }{2}.$
当满足上述两个条件时,有:
$|f_n(x_n)-f(x_0)|\leq |f_n(x_n)-f_n(x_0)|+|f_n(x_0)-f(x_0)|< \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon .$
命题得证。


雷达卡
京公网安备 11010802022788号







