你好,欢迎来到经管之家 [登录] [注册]

设为首页 | 经管之家首页 | 收藏本站

多元合金的电子、原子层次的理论计算及其应用_网络工程毕业论文

发布时间:2015-03-16 来源:人大经济论坛
多元合金的电子、原子层次的理论计算及其应用_网络工程毕业论文 【摘 要】本文是在电子、原子层次上进行多元合金设计的1个初步探索,研究表明,由原子间相互作用势计算确定合适的基体成分,选择尝试的合金总成分,通过经验公式计算碳 化物体积分数,取得与合适的相结构对应的合金总成分, 由试验检验设计的合理性。这样的 1种思路是可行的。 关键词: 第1原理; 相互作用势; 多元合金; 合金设计 Abstract This is a preliminary investigation of alloy design for multi-element alloys at electronic and atomic scale. The research shows that this idea of alloy design was feasible that first calculating the properties of matrix with different compositions by interatomic potential, secondly selecting the attempt total composition of the alloy, then calculating the carbide volume fraction by empirical formulae, until obtaining the appropriate total composition of the alloy corresponding to the desired phase structure, finally testing the design by experiment. Keywords: first principles, Interatomic potentials, Multi-element alloy, alloy design 1.引言 目前从电子、原子层次上进行材料设计是材料科学领域的学者们广泛关注的热点问题, 主要研究方法有第1性原理方法,第1性原理赝势方法,原子间相互作用势方法,分子力学 方法,分子动力学方法及蒙特卡罗方法等。其中前两种方法是在电子层次上进行材料设计的 方法,其方法的物理基础可靠,但由于计算工作量很大,因而所计算的体系受到1定的限制。 后几种方法是在原子及分子层次上的设计方法,这几种方法不考虑电子结构的影响,虽然会 损失1些精度,但大体上反映出由相互作用势所决定的晶体结构,以及由晶体结构所决定的 材料性质,且计算速度明显提高[1]。本文在多元合金的电子、原子层次的理论计算上联合使 用了第1性原理方法和原子间相互作用势方法,根据 3 种系列合金的关键问题进行理论计算 并结合其他理论计算和经验计算进行了合金设计探讨。 2.Fe-Cr-Mn-C 系亚稳奥氏体基铸造合金 Fe-Cr-Mn-C 系亚稳奥氏体基铸造合金有优异的耐磨性和高的抗冲刷腐蚀能力。其合金 设计的关键理论问题是 B 对该多元合金奥氏体体系的影响,以及对含 B 多元合金奥氏体电 子、原子层次的计算研究。通过对奥氏体合金大体系的能量计算,既可以解释 B 元素在奥 氏体中占位、分布、固溶度、与 C 的替代作用、与其他合金元素的配合对奥氏体的影响, 又可进而解释 B 对摩擦诱发马氏体相变的作用[2]。Fe-Cr-Mn-C-B 系铸造合金1般为基体(奥 氏体或马氏体)和碳硼化物组成的双相系统,其中 C 元素和 B 元素在奥氏体基体中的作用 对合金材料的性能有重要影响。C 在奥氏体中的固溶度和占位已很清楚,而 B 的固溶度和 占位还不很清楚,采用量子化学从头计算方法,通过对含 C、B 的奥氏体小团簇电子结构计 算,来研究 B 在奥氏体中的固溶度和占位情况。 团簇的选取以从奥氏体的实测晶格结构出发,从中选取奥氏体中的8面体和4面体小团 簇。并在团簇中心分别加入1个 B 或 C 原子,计算团簇的结合能,见表 1。由表 1 可见奥 氏体中 Fe4 4面体团簇的原子平均结合能略大于 Fe6 8面体的,因为8面体中存在距离较远 的3对原子,使结合能降低。B 和 C 均使4面体体积增大很多(棱长增加 34.2%),使结合 能降低,表明它们在4面体间隙存在的可能性很小,尤其是 B 更小。B 使8面体的体积增 大(棱长增加 16.2%),结合能略有升高;在体积不变时,C 使8面体的结合能略有降低, 表明 C 在奥氏体8面体间隙中的溶解度要远大于 B。 表 1 量子化学从头算合金小团簇的电子结构计算结果     采用量子化学从头计算精确处理含 B 小团簇,以半经验原子间相互作用对势处理大团 簇,研究含微量 B 元素的合金奥氏体大体系。对含微量元素小团簇进行局部精确计算,对 大团簇采用低精度的计算方法,既能反映微量元素的作用,也使电子、原子层次的计算处理 多元合金大体系成为现实。 应用量子化学从头计算方法对含 B、C 奥氏体大体系进行局部精确计算,计算结果:B 在8面体间隙中的原子平均结合能为 1.6978eV,最近键距为 0.29967nm;C 在8面体间隙中 的原子平均结合能为 1.3520eV,最近键距为 0.25780nm;每个8面体间隙 B 原子使奥氏体 Fe 团簇总结合能降低 116.91443eV,每个 C 原子使小团簇总结合能降低 0.459142eV,B 原 子对奥氏体能量的影响是 C 原子的 254.6 倍。利用量子化学从头计算方法计算了 Fe-Cr-Mn-C-B 系双原子团簇的势能,提出按势能曲线最低点与从头计算所得的势能最低值 相重合的拟合原则,得出半经验原子间相互作用对势的参数,并计算了奥氏体团簇的平均结 合能、平衡原子间距,结果与实验符合。将量子化学从头计算方法精确计算小团簇和半经验 原子间相互作用对势处理大团簇相结合,计算分析 B、C 元素在奥氏体中的间隙固溶度,得 出了 B 原子处于奥氏体的8面体间隙中时的固溶度为 0.097wt%,此时对奥氏体大体系能量 的影响贡献最大,B 在晶界和缺陷中存在对体系能量影响很小。表 2 是随含量增加合金奥 氏体的原子平均结合能的变化。 表 2奥氏体中其他元素近似不变时 B 含量变化引起的团簇原子平均能的变化   根据半经验原子间相互作用对势计算结果,B 在晶界上与 Fe 较易结合,B 在固溶体中 晶界上的存在几率很大,而且 B 在硼碳化物中的含量比率也很高,由此,可估算出奥氏体 基铁合金中 B 的加入量范围约为 0.05~1.00wt%。计算了奥氏体大团簇中 Cr、Mn、C 元素含 量固定时,B 的加入对团簇原子平均结合能的影响。随奥氏体中 B 量的增加,原子平均结 合能降低,当 B 含量增至 0.0427wt%时,原子平均结合能与纯铁奥氏体相比降低 10%,将此 时的 B 含量定义为 B 在该团簇中的极限含量,当其他元素含量改变时,B 在奥氏体中极限 含量将有所变化。随着结合能的降低,奥氏体更易摩擦诱发马氏体相变。图 1 分别是无 B 和含 B 合金磨损表面的 XRD 衍射谱。所研究开发的 Fe-Cr-Mn-C-B 系亚稳奥氏体基耐磨铸 造合金为新型耐磨材料(图 2)。   (a)合金 1                                                                               (b)合金 4 图 1 Fe-Cr-Mn-C-B 系合金摩擦表面 XRD 图   图 2 Fe-Cr-Mn-C-B 奥氏体基合金的组织(1000×), (a)合金 2,                                          (b)合金 3,                                           (c)合金 4 3.Fe-Cr-V-Ni-Si-C 系马氏体基铸造合金 高铬铸铁是高性能的耐磨材料。以高钒作为合金强化元素加入到高铬铸铁中,有利于大 幅度提高高铬铸铁耐磨性,并提高冲击韧性。高铬铸铁1般经高温淬火得到马氏体,但高钒 高铬铸铁在高温时因强烈的氧化而不适合热处理。为此,研究高钒高铬铸铁在铸态下得到稳 定的马氏体基体而省略淬火过程具有重要的实际意义。铸态下直接得到马氏体的关键是选择 合适的化学成分。 将 Finnis-Sinclair 多体势扩展到多元合金,建立适合于 Fe-Cr-V-Ni-Si-C 系的多元合金的 原子间 相互 作用势 函数 ;利用 第1 性原理 从头 算所得 的平 衡距离 及结 合能, 拟合 Fe-Cr-V-Ni-Si-C 系多元合金中与 Si 和 C 有关的对势函数;利用第1性原理赝势平面波方法 计算 Fe-Cr、Fe-V、Fe-Ni、Cr-V、Cr-Ni、Ni-V 2元合金的晶格常数、结合能及体弹性模量, 并根据计算得到的这些数据,构造 Fe-Cr-V-Ni-Si-C 系多元合金中与 Fe、Cr、V、Ni 有关的 2元合金的 F-S 多体势函数;这样便得到了应用于 Fe-Cr-V-Ni-Si-C 系多元合金的原子间相 互作用势函数[3]。利用所得 Fe-Cr-V-Ni-Si-C 系多元合金的原子间相互作用势函数,研究该 多元合金奥氏体基体的稳定性;并且通过金相显微镜、X-Ray 衍射仪、扫描电镜及电子探针 等分析测试设备对多元合金样品进行测试,对测试结果进行分析,与计算结果进行比较。 采用了独立于实验数据的基于第1性原理计算的晶格常数、结合能及体弹性模量构建了 原子间相互作用势函数,该方法对于目前还没有足够实验数据的合金特别是多元合金的研究 是1个很有效的方法。将 F-S 多体势扩展到多元合金,拓宽了理论的应用范围。研究结果表 明:当基体中 含 C 量大于 0.6wt%,含 Ni 量在 1.02~1.50wt%范围内时,合金奥氏体基体 较稳定。当合金中 Ni 含量从 0.8wt%至 1.6wt%逐渐增加时,合金的奥氏体基体越来越稳定; 但是,当合金中 Ni 含量达到 2.4wt%时,奥氏体基体能量却上升,稳定性反而下降(表 4), Ni 含量 2.4wt%铸造合金的残余奥氏体量明显低于马氏体量。计算结果与 X 射线衍射结果1 致(参见图 3)。 表 4 合金奥氏体基体(Fe-7.5Cr-2.2V-Ni-1.8Si-0.9C)的晶体特性       图 3 合金 N5-N8 的铸态下 X 射线衍射图   图 4 合金(1.2Ni)的铸态组织                                                  图 5 合金 (1.2 及 2.4 Ni)的回火硬度 实验表明,含 Ni 高 V 高 Cr 铸铁浇注后即形成马氏体加奥氏体组织(图 4),通过高温 回火残余奥氏体分解,并获得2次硬化(图 5),避免了高温淬火时的严重氧化现象,成为 具有实际应用价值的耐磨合金。 4.Fe-Cr-W-Mo-V-Si-Mn-Ni-C 系合金钢 多元合金高碳钢成分设计合适时,钢中存在多类型碳化物(M3C、M23C6、M7C3、 M6C 和 MC),在常规的锻轧加工和退火工艺条件下,碳化物具有超细化特征。为了开发适 应不同生产条件的多类型超细碳化物高碳合金钢,其固溶强化的 Si 元素部分以 Ni 元素替代。 因此,合理的成分设计是常规热处理工艺下获得超细碳化物高碳合金钢的关键。 利用扩充的量子化学从头计算程序计算 Fe、Cr、Mn、Mo、V、Si、Ni、C 组成的双原 子团簇的电子结构数据,由于该程序只能计算包括 Mo 在内的元素周期表中前 54 号元素, 而不能计算与 W 相关的双原子团簇电子结构数据,利用第1性原理赝势平面波方法计算 W 与其它原子组成的2元合金的电子结构数据,拟合半经验原子间相互作用对势。利用半经验 原子间相互作用对势,选择8面体为中心的奥氏体晶胞模型、马氏体晶胞模型,计算奥氏体、 马氏体中各类晶胞室温、常压下的结合能信息。相对 γ-Fe 基体、α-Fe 基体而言,含有碳原 子和合金元素原子的晶胞均具有较大的结合能,起到固溶强化作用。 采用直接将第1性原理赝势平面波方法计算 W 的结果与从头计算程序计算其它原子的 结果联合使用,或考虑 CASTEP 软件计算结果与从头计算程序计算结果存在整体差异,联 合使用存在 “未校准0点”误差,将第1性原理赝势平面波方法计算 W 的结果除以修正系 数后与从头计算程序计算其它原子的结果联合使用,或考虑不含 W 元素的情况下利用从头 计算程序计算的结果,研究 Si、Ni、C 的变化对 Fe-Cr-W-Mo-V-Si-Mn-Ni-C 多元合金基体原 子间的结合能的影响,通过3种方法计算结果比较,采用修正系数处理的方法比较合理。得 出:合金奥氏体基体、马氏体基体原子间的结合能随着含 C 量、含 Si 量、含 Ni 量的增加呈 逐渐增加的趋势,随 Si 含量的增加原子间的结合能急剧上升,随 Ni 含量的增加原子间的结 合能缓慢上升,即 Si 含量的变化比 Ni 含量的变化对马氏体基体强度影响大。当 Si 或 Ni 以 外的元素含量都不变时, Si 或 Ni 的含量在 0.2%~0.6%时, Ni 含量对原子间的结合能影响 高于 Si。Si 或 Ni 的含量在 0.6%~0.8%时,转换为 Si 含量对原子间的结合能影响高于 Ni(图 6)。上述结果为合金设计时根据性能要求确定 Si、Ni 含量提供理论依据。   图 6 DM8A 合金马氏体基体原子间的结合能随含 C 量、含 Si 量、含 Ni 量的变化 表 5 是 3 种钢在淬火温度下的基体成分。DM8, DM8A 和 DM8B 钢的基体的 C 和合金元 素含量是用相平衡热力学和在电子、原子层次上马氏体的原子间结合能计算的。实验结果表 明原子间结合能与力学性能有对应关系,其比值是 2.3  10-4-2.5  10-4(表.6). 表 5 3种钢基体成分(wt%)   表 6 3种钢马氏体结合能和机械性能   实验研究表明,3种中合金钢退火后剩余碳化物均达到了超细化的程度(图 7)。根据 3种钢实验结果,分析碳化物超细化的原因主要是由碳化物溶解、形核的转变过程所引起的。 加热至   相变附近的温度再退火或淬火的碳化物的细化程度依赖于碳化物类型及其比 例,因此,合理的成分设计是常规热处理工艺下获得超细碳化物高碳低、中合金钢的关键。 与同类型钢比较,其抗弯强度、屈服强度、挠度和冲击韧性均明显提高。   图 7 3种钢的淬火组织 根据碳化物随温度变化的规律,并结合热力学相平衡计算,设计的多类型碳化物 DM7S 钢,成分(wt%)为:C 0.85-0.95,Mn 0.3-0.5,Si 0.3-0.50,Cr 6.0-7.0, W 2.5-3.5,V 1.0-1.5, Mo 0.85-1.5,Ni 0.25-0.42。在常规的热处理工艺条件下,碳化物具有超细化特性(图 8)。 1080℃以上淬火,500-560℃回火时出现2次硬化效应,最高硬度接近 64HRC。   图 8 DM7S 钢 1100℃淬火显微组织(a)及其碳化物颗粒尺寸分布(b) 5. 结语 本文以第1原理计算(量子化学从头计算方法和第1性原理赝势方法)按势能曲线最低 点的拟合原则,对小团簇进行局部精确计算和对大团簇采用低精度的计算方法进行能量叠 加,以及用偏聚结构晶胞的计算用于多元合金的理论计算上。虽然其理论依据和计算精度有 待于进1步探讨,但却实现了多元合金的电子、原子层次的理论计算。针对3种多元合金材 料的不同问题采用了不同的计算方法,计算结果与某些实验结果相对应。
经管之家“学道会”小程序
  • 扫码加入“考研学习笔记群”
推荐阅读
经济学相关文章
标签云
经管之家精彩文章推荐