多晶硅薄膜的制备方法_材料专业毕业论文-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 毕业论文>>

材料毕业论文

>>

多晶硅薄膜的制备方法_材料专业毕业论文

多晶硅薄膜的制备方法_材料专业毕业论文

发布:经管之家 | 分类:材料毕业论文

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

经管之家新媒体交易平台

提供"微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯"等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

提供微信号、微博、抖音、快手、头条、小红书、百家号、企鹅号、UC号、一点资讯等虚拟账号交易,真正实现买卖双方的共赢。【请点击这里访问】

摘要:低压化学气相沉积、固相晶化、准分子激光晶化、快速热退火、金属诱导晶化、等离子体增强化学反应气相沉积等是目前用于制备多晶硅薄膜的几种主要方法。它们具有各自不同的制备原理、晶化机理、及其优缺点。关键 ...
免费学术公开课,扫码加入


摘要:低压化学气相沉积、固相晶化、准分子激光晶化、快速热退火、金属诱导晶化、等离子体增强化学反应气相沉积等是目前用于制备多晶硅薄膜的几种主要方法。它们具有各自不同的制备原理、晶化机理、及其优缺点。

关键词:氢化非晶硅 多晶硅 晶化

The preparation methods of polycrystalline silicon film

Abstract: At present,The preparation methods of polycrystalline silicon film,including Low pressure Chemical Vapor Deposition、Solide Phase Crystallization、Excimer Laser Annealing、 Rapid Thermal Annealing、Metal Induced Crystallization、plasma enhanced chemical vapor deposition,are being developed. we review typical preparation methods of polycrystalline silicon film、Crystallization Mechanism、their Advantage and Disadvantage.

Keywords: a-Si:H,Polycrystalline silicon, Crystallization

1 前言

多晶硅薄膜同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。目前制备多晶硅薄膜的方法主要有如下几种:

2 低压化学气相沉积(LPCVD)

这是一种直接生成多晶硅的方法。LPCVD是集成电路中所用多晶硅薄膜的制备中普遍采用的标准方法,具有生长速度快,成膜致密、均匀,装片容量大等特点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参数是:硅烷压力为13.3~26.6Pa,沉积温度Td=580~630℃,生长速率5~10nm/min。由于沉积温度较高,如普通玻璃的软化温度处于500~600℃,则不能采用廉价的普通玻璃而必须使用昂贵的石英作衬底。 LPCVD法生长的多晶硅薄膜,晶粒具有110择优取向,形貌呈“V”字形,内含高密度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面受到一定限制。虽然减少硅烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度的增加,对载流子的迁移率与器件的电学稳定性产生不利影响。

3 固相晶化(SPC)

所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是一种间接生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550℃左右沉积a-Si:H薄膜,然后将薄膜在600℃以上的高温下使其熔化,再在温度稍低的时候出现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒增大转化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大小依赖于薄膜的厚度和结晶温度。退火温度是影响晶化效果的重要因素,在700℃以下的退火温度范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大;而在700℃以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒尺寸还与初始薄膜样品的无序程度密切相关,T.Aoyama等人对初始材料的沉积条件对固相晶化的影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越低,晶粒尺寸越大。由于在结晶过程中晶核的形成是自发的,因此,SPC多晶硅薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高SPC多晶硅的性能。这种技术的优点是能制备大面积的薄膜, 晶粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成生产线。由于SPC是在非晶硅熔融温度下结晶,属于高温晶化过程,温度高于600℃,通常需要1100 ℃左右,退火时间长达10个小时以上,不适用于玻璃基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取景器等。

4 准分子激光晶化(ELA)

激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应,使a-Si薄膜在瞬间达到1000℃左右,从而实现a-Si向p-Si的转变。在此过程中,激光脉冲的瞬间(15~50ns )能量被a-Si薄膜吸收并转化为相变能,因此,不会有过多的热能传导到薄膜衬底,合理选择激光的波长和功率,使用激光加热就能够使a-Si薄膜达到熔化的温度且保证基片的温度低于450℃,可以采用玻璃基板作为衬底,既实现了p-Si薄膜的制备,又能满足LCD及OEL对透明衬底的要求。其主要优点为脉冲宽度短(15~50ns ),衬底发热小。通过选择还可获得混合晶化,即多晶硅和非晶硅的混合体。准分子激光退火晶化的机理:激光辐射到a-Si的表面,使其表面在温度到达熔点时即达到了晶化域值能量密度Ec。a-Si在激光辐射下吸收能量,激发了不平衡的-空穴对,增加了自由电子的导电能量,热电子-空穴对在热化时间内用无辐射复合的途径将自己的能量传给晶格,导致近表层极其迅速的升温,由于非晶硅材料具有大量的隙态和深能级,无辐射跃迁是主要的复合过程,因而具有较高的光热转换效率,若激光的能量密度达到域值能量密度Ec时,即半导体加热至熔点温度,薄膜的表面会熔化,熔化的前沿会以约10m/s的速度深入材料内部,经过激光照射,薄膜形成一定深度的融层,停止照射后,融层开始以108-1010K/s的速度冷却,而固相和液相之间的界面将以1-2m/s的速度回到表面,冷却之后薄膜晶化为多晶,随着激光能量密度的增大,晶粒的尺寸增大,当非晶薄膜完全熔化时,薄膜晶化为微晶或多晶,若激光能量密度小于域值能量密度Ec,即所吸收的能量不足以使表面温度升至熔点,则薄膜不发生晶化。一般情况下,能量密度增大,晶粒增大,薄膜的迁移率相应增大,当Si膜接近全部熔化时,晶粒最大。但能量受激光器的限制,不能无限增大,太大的能量密度反而令迁移率下降。激光波长对晶化效果影响也很大,波长越长,激光能量注入Si膜越深,晶化效果越好。 ELA法制备的多晶硅薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷少、电学特性好、迁移率高达到400cm2/v.s,是目前综合性能最好的低温多晶硅薄膜。工艺成熟度高,已有大型的生产线设备,但它也有自身的缺点,晶粒尺寸对激光功率敏感,大面积均匀性较差。重复性差、设备成本高,维护复杂。

5 快速热退火(RTA)

一般而言,快速退火处理过程包含三个阶段:升温阶段、稳定阶段和冷却阶段。当退火炉的电源一打开,温度就随着时间而上升,这一阶段称为升温阶段。单位时间内温度的变化量是很容易控制的。在升温过程结束后,温度就处于一个稳定阶段。最后,当退火炉的电源关掉后,温度就随着时间而降低,这一阶段称为冷却阶段。用含氢非晶硅作为初始材料,进行退火处理。平衡温度控制在600℃以上,纳米硅晶粒能在非晶硅薄膜中形成,而且所形成的纳米硅晶粒的大小随着退火过程中的升温快慢而变化。在升温过程中,若单位时间内温度变化量较大时(如100℃/s),则所形成纳米硅晶粒较小(1.6~15nm);若单位时间内温度变化量较小(如1℃/s),则纳米硅粒较大(23~46nm)。进一步的实验表明:延长退火时间和提高退火温度并不能改变所形成的纳米硅晶粒的大小;而在退火时,温度上升快慢直接影响着所形成的纳米硅晶粒大小。为了弄清楚升温量变化快慢对所形成的纳米硅大小晶粒的影响,采用晶体生长中成核理论。在晶体生长中需要两步:第一步是成核,第二步是生长。也就是说。在第一步中需要足够量的生长仔晶。结果显

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
经管之家 人大经济论坛 大学 专业 手机版