[Numerical Methods in Finance and Economics]基于MATLAB的经济金融数值分析
发布:shijie_ph | 分类:Matlab软件培训
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
TOP热门关键词
Amazon的链接http://www.amazon.com/Numerical-Methods-Finance-Economics-MATLAB-Based/dp/0471745030目录PartIBackground1Motivation1.1Needfornumericalmethods1.2Needfornumericalcomputingenvironments:whyMATL ...
扫码加入金融交流群![]() |
Amazon的链接
http://www.amazon.com/Numerical-Methods-Finance-Economics-MATLAB-Based/dp/0471745030
目录
Part I Background
1 Motivation
1.1 Need for numerical methods
1.2 Need for numerical computing environments:
why MATLAB?
1.3 Need for theory
For further reading
References
2 Financial Theory
2.1 Modeling uncertainty
2.2 Basic financial assets and related issues
2.2.1 Bonds
2.2.2 Stocks
vii
viii CONTENTS
2.2.3 Derivatives
2.2.4 Asset pricing, portfolio optimization, and
risk management
2.3 Fixed-income securities: analysis and portfolio
immunization
2.3.1 Basic theory of interest rates: compounding
and present value
2.3.2 Basic pricing of fixed-income securities 49
2.3.3 Interest rate sensitivity and bond portfolio
immunization
2.3.4 MATLAB functions to deal with fixedincome
securities
2.3.5 Critique
2.4 Stock portfolio optimization
2.4.1 Utility theory
2.4.2 Mean-variance portfolio optimization
2.4.3 MATLAB functions to deal with meanvariance
portfolio optimization
2.4.4 Critical remarks
2.4.5 Alternative risk measures: Value at Risk
and quantile-based measures
2.5 Modeling the dynamics of asset prices
2.5.1 From discrete to continuous time
2.5.2 Standard Wiener process
2.5.3 Stochastic integrals and stochastic
differential equations
2.5.4 Ito’s lemma
2.5.5 Generalizations
2.6 Derivatives pricing
2.6.1 Simple binomial model for option pricing
2.6.2 Black–Scholes model
2.6.3 Risk-neutral expectation and Feynman–
Kaˇc formula
2.6.4 Black–Scholes model in MATLAB
2.6.5 A few remarks on Black–Scholes formula
2.6.6 Pricing American options
2.7 Introduction to exotic and path-dependent options
2.7.1 Barrier options
2.7.2 Asian options
2.7.3 Lookback options
CONTENTS ix
2.8 An outlook on interest-rate derivative
2.8.1 Modeling interest-rate dynamics
2.8.2 Incomplete markets and the market price
of risk
For further reading
References
Part II Numerical Methods
3 Basics of Numerical Analysis
3.1 Nature of numerical computation
3.1.1 Number representation, rounding, and
truncation
3.1.2 Error propagation, conditioning, and
instability
3.1.3 Order of convergence and computational
complexity
3.2 Solving systems of linear equations
3.2.1 Vector and matrix norms
3.2.2 Condition number for a matrix
3.2.3 Direct methods for solving systems of
linear equations
3.2.4 Tridiagonal matrices
3.2.5 Iterative methods for solving systems of
linear equations
3.3 Function approximation and interpolation
3.3.1 Ad hoc approximation
3.3.2 Elementary polynomial interpolation
3.3.3 Interpolation by cubic splines
3.3.4 Theory of function approximation by least
squares
3.4 Solving non-linear equations
3.4.1 Bisection method
3.4.2 Newton’s method
3.4.3 Optimization-based solution of non-linear
equations
3.4.4 Putting two things together: solving
a functional equation by a collocation
method
x CONTENTS
3.4.5 Homotopy continuation methods
For further reading
References
4 Numerical Integration: Deterministic and Monte Carlo
Methods
4.1 Deterministic quadrature
4.1.1 Classical interpolatory formulas
4.1.2 Gaussian quadrature
4.1.3 Extensions and product rules
4.1.4 Numerical integration in MATLAB
4.2 Monte Carlo integration
4.3 Generating pseudorandom variates
4.3.1 Generating pseudorandom numbers
4.3.2 Inverse transform method
4.3.3 Acceptance–rejection method
4.3.4 Generating normal variates by the polarapproach
4.4 Setting the number of replications
4.5 Variance reduction techniques
4.5.1 Antithetic sampling
4.5.2 Common random numbers
4.5.3 Control variates
4.5.4 Variance reduction by conditioning
4.5.5 Stratified sampling
4.5.6 Importance sampling
4.6 Quasi-Monte Carlo simulation
4.6.1 Generating Halton low-discrepancy sequences
4.6.2 Generating Sobol low-discrepancy sequences
For further reading
References
5 Finite Difference Methods for Partial Differential
Equations
5.1 Introduction and classification of PDEs
5.2 Numerical solution by finite difference methods
5.2.1 Bad example of a finite difference scheme
CONTENTS xi
5.2.2 Instability in a finite difference scheme
5.3 Explicit and implicit methods for the heat
equation
5.3.1 Solving the heat equation by an explicit
method
5.3.2 Solving the heat equation by a fully
implicit method
5.3.3 Solving the heat equation by the Crank–
Nicolson method
5.4 Solving the bidimensional heat equation
5.5 Convergence, consistency, and stability
For further reading 324
References 324
6 Convex Optimization 327
6.1 Classification of optimization problems 328
6.1.1 Finite- vs. infinite-dimensional problems 328
6.1.2 Unconstrained vs. constrained problems 333
6.1.3 Convex vs. non-convex problems 333
6.1.4 Linear vs. non-linear problems 335
6.1.5 Continuous vs. discrete problems 337
6.1.6 Deterministic vs. stochastic problems 337
6.2 Numerical methods for unconstrained optimization 338
6.2.1 Steepest descent method 339
6.2.2 The subgradient method 340
6.2.3 Newton and the trust region methods 341
6.2.4 No-derivatives algorithms: quasi-Newton
method and simplex search 342
6.2.5 Unconstrained optimization in MATLAB 343
6.3 Methods for constrained optimization 346
6.3.1 Penalty function approach 346
6.3.2 Kuhn–Tucker conditions 351
6.3.3 Duality theory 357
6.3.4 Kelley’s cutting plane algorithm 363
6.3.5 Active set method 365
6.4 Linear programming 366
6.4.1 Geometric and algebraic features of linear
programming 368
6.4.2 Simplex method 370
xii CONTENTS
6.4.3 Duality in linear programming 372
6.4.4 Interior point methods 375
6.5 Constrained optimization in MATLAB 377
6.5.1 Linear programming in MATLAB 378
6.5.2 A trivial LP model for bond portfolio
management 380
6.5.3 Using quadratic programming to trace
efficient portfolio frontier 383
6.5.4 Non-linear programming in MATLAB 385
6.6 Integrating simulation and optimization 387
S6.1 Elements of convex analysis 389
S6.1.1 Convexity in optimization 389
S6.1.2 Convex polyhedra and polytopes 393
For further reading 396
References 397
Part III Pricing Equity Options
7 Option Pricing by Binomial and Trinomial Lattices 401
7.1 Pricing by binomial lattices 402
7.1.1 Calibrating a binomial lattice 403
7.1.2 Putting two things together: pricing a
pay-later option 410
7.1.3 An improved implementation of binomial
lattices 411
7.2 Pricing American options by binomial lattices 414
7.3 Pricing bidimensional options by binomial lattices 417
7.4 Pricing by trinomial lattices 422
7.5 Summary 425
For further reading 426
References 426
8 Option Pricing by Monte Carlo Methods 429
8.1 Path generation 430
8.1.1 Simulating geometric Brownian motion 431
8.1.2 Simulating hedging strategies 435
8.1.3 Brownian bridge 439
8.2 Pricing an exchange option 443
CONTENTS xiii
8.3 Pricing a down-and-out put option 446
8.3.1 Crude Monte Carlo 446
8.3.2 Conditional Monte Carlo 447
8.3.3 Importance sampling 450
8.4 Pricing an arithmetic average Asian option 454
8.4.1 Control variates 455
以下略... 内容超长了
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:[Numerical Methods in Finance and Economics]基于MATLAB的经济金融数值分析
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_matlabruanjianpeixun_1531781_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



