基于MATLAB的spatial panel model 程序阅读与学习。
发布:tulipsliu | 分类:Matlab软件培训
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
TOP热门关键词
发此文的目的是通过研读程序,更深入的了解Elhost在写这个程序时的思想,通过认真研读程序,深入掌握空间面板程序建模的问题。%DemonstrationfileforElhorstPanelDatacode%%Datasetdownloadedfromwww.wiley.co.uk/ba ...
免费学术公开课,扫码加入![]() |
- % Demonstration file for Elhorst Panel Data code
- %
- % Dataset downloaded from www.wiley.co.uk/baltagi/
- % Spatial weights matrix constructed by Elhorst
- %
- % written by: J.Paul Elhorst summer 2010
- % University of Groningen
- % Department of Economics
- % 9700AV Groningen
- % the Netherlands
- % j.p.elhorst@rug.nl
- %
- % REFERENCE:
- % Elhorst JP (2010) Matlab Software for Spatial Panels. Under review.
- %
- % Elhorst JP (2010) Spatial Panel Data Models. In Fischer MM, Getis A (Eds.)
- % Handbook of Applied Spatial Analysis, Ch. C.2. Springer: Berlin Heidelberg New York.
- %
- % New:
- % 1) Direct/Indirect effect esimates of the explanatory variables
- % LeSage JP, Pace RK (2009) Introduction to Spatial Econometrics. Boca Raton, Taylor & Francis Group.
- % routine direct_indirect_effects_estimates(results,W,spat_model) is written by J.P. Elhorst
- % routines panel_effects_sar(results,vnames,W) and panel_effects_sar(results,vnames,W)
- % are written and made available by D. Lacombe
- % User may use both routines (note: results are slightly different from each other since they are based on draws from a distrobution
- % or choose one particular routine. If N is large, user should choose
- % Lacombe's routines, since this one is much more efficient computationally
- % 2) Bias correction of coefficient estimates
- % Lee Lf, Yu J. (2010) Estimation of spatial autoregressive models with
- % fixed effects, Journal of Econometrics 154: 165-185.
- % 3) Selection framework to determine which spatial panel data model best
- % describes the data.
- % dimensions of the problem
- load cigarette_mat;
- load US_W;
- T=30; % number of time periods
- N=46; % number of regions
- % row-normalize W
- W=normw(W1); % function of LeSage
- y=A(:,[3]); % column number in the data matrix that corresponds to the dependent variable
- x=A(:,[4,6]); % column numbers in the data matrix that correspond to the independent variables
- for t=1:T
- t1=(t-1)*N+1;t2=t*N;
- wx(t1:t2,:)=W*x(t1:t2,:);
- end
- xconstant=ones(N*T,1);
- [nobs K]=size(x);
- % ----------------------------------------------------------------------------------------
- % No fixed effects + spatially lagged dependent variable
- info.lflag=0; % required for exact results
- info.model=0;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,[xconstant x],W,T,info);
- vnames=char('logcit','intercept','logp','logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=0;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sar(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % No fixed effects + spatially lagged dependent variable + spatially
- % independent variables
- info.lflag=0; % required for exact results
- info.model=0;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,[xconstant x wx],W,T,info);
- vnames=char('logcit','intercept','logp','logy','W*logp','W*logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=1;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sdm(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % Spatial fixed effects + spatially lagged dependent variable
- info.lflag=0; % required for exact results
- info.model=1;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,x,W,T,info);
- vnames=char('logcit','logp','logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=0;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sar(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % Spatial fixed effects + spatially lagged dependent variable + spatially
- % independent variables
- info.lflag=0; % required for exact results
- info.model=1;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,[x wx],W,T,info);
- vnames=char('logcit','logp','logy','W*logp','W*logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=1;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sdm(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % Time period fixed effects + spatially lagged dependent variable
- info.lflag=0; % required for exact results
- info.model=2;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,x,W,T,info);
- vnames=char('logcit','logp','logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=0;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sar(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % Time period fixed effects + spatially lagged dependent variable + spatially
- % independent variables
- info.lflag=0; % required for exact results
- info.model=2;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,[x wx],W,T,info);
- vnames=char('logcit','logp','logy','W*logp','W*logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=1;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sdm(results,vnames,W);
- % ----------------------------------------------------------------------------------------
- % Spatial and time period fixed effects + spatially lagged dependent variable
- info.lflag=0; % required for exact results
- info.model=3;
- info.fe=0; % Do not print intercept and fixed effects; use info.fe=1 to turn on
- % New routines to calculate effects estimates
- results=sar_panel_FE(y,x,W,T,info);
- vnames=char('logcit','logp','logy');
- % Print out coefficient estimates
- prt_sp(results,vnames,1);
- % Print out effects estimates
- spat_model=0;
- direct_indirect_effects_estimates(results,W,spat_model);
- panel_effects_sar(results,vnames,W);
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:基于MATLAB的spatial panel model 程序阅读与学习。
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_matlabruanjianpeixun_2119961_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



