R语言现场培训_17年7月北京-经管之家官网!

人大经济论坛-经管之家 收藏本站
您当前的位置> 软件培训>>

R语言培训

>>

R语言现场培训_17年7月北京

R语言现场培训_17年7月北京

发布:资料狂人 | 分类:R语言培训

关于本站

人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!

获取电子版《CDA一级教材》

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。

大数据时代数据分析的必备技能——R数据挖掘与机器学习时间:2017年7月22-24日(三天)初级;7月26-28日(三天)高级地点:北京市海淀区首都体育学院费用:初级:3300元/2800元(仅限全日制本科生及硕士研究生优惠价)高级 ...
扫码加入金融交流群


大数据时代数据分析的必备技能

——R数据挖掘与机器学习

时间:2017年7月22-24日 (三天)初级;7月26-28日 (三天)高级

地点:北京市海淀区首都体育学院

费用:

初级:3300元 / 2800元 (仅限全日制本科生及硕士研究生优惠价)

高级:3600元 / 3100元 (仅限全日制本科生和硕士研究生优惠价)

全程:6600元 / 5600元 (仅限全日制本科生和硕士研究生优惠价)

(食宿自理)

安排:上午9:00-12:00;下午2:00-5:00;答疑

我要报名


讲师介绍:
方匡南老师,统计学教授,博士生导师,耶鲁大学博士后。主要研究:数据挖掘、应用统计。 2007年出版了国内本R语言中文教程《R语言统计分析软件简明教程》,并于2015年2月出版了《R数据分析:方法与案例详解》,该书在同类书籍中销售名列前茅,并被引入到台湾地区出版。有10多年的R语言使用经验和丰富的数据挖掘和机器学习实战经验。曾先后在在 Journal of Multivariate Analysis、Scientific Reports(Nature子刊)、Computational Statistics and Data Analysis等国内外权威期刊发表论文70多篇。先后主持了国家自然科学基金、国家社科基金等多个项目。承担了多个企业数据挖掘项目,有丰富的实战经验。
长期讲授《数据挖掘》、《机器学习》等课程,讲课生动活泼、深入浅出、以实际案例引出统计方法,再通过编程讲解实际操作和结果分析。
课程配套资料:
(1)提供一份精心准备的非常全面的R软件入门和数据挖掘与机器学习讲义。
(2)提供课程源代码1份和相应数据若干份。
Special大礼包:赠送方老师主讲的R初级和高级视频,价值1000元!

R简介:
R语言由新西兰奥克兰大学ross ihaka和robert gentleman 开发。R语言是自由软件,可以放心大胆地使用,且具有非常强大的统计分析和作图功能,而且更重要的是R软件具有非常丰富的网上资源,目前R软件有3000多种贡献包,几乎可以实现所有的统计方法,目前大部分的统计学家和计量经济学家都使用R语言,而且越来越多的数据分析实务人员也开始使用R语言。R语言具有简单易学,功能强大,体积小(仅40m左右),完全免费,可自由开发等特点,且R语言和S语言语法基本相同,绝大部分程序是互相兼容的。学习R软件正成为一种趋势。
R软件最优美的地方是它能够修改很多前人编写的包的代码做各种你所需的事情,实际你是站在巨人的肩膀上。——Google首席经济学家Hal Varian


学员对象:

金融、医疗、通讯、咨询、电子商务等领域的数据分析人员、数据挖掘工程师、数据科学家;

高校硕士生、博士生、青年教师等。


培训目的和特色:
【初级班】

(1)让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会基本的编程方法。

(2)结合统计分析的思想和实际案例,深入浅出地讲解如何使用R语言进行实际数据的统计分析,让学员不仅掌握R语言的使用,更重要的是学会统计分析的思想。

(3)学完本课程后,使学员基本上可以使用R语言进行实际的统计分析工作。尤其学会使用R语言对批量处理的实务数据分析,大大提高工作效率。


【高级班】

(1)让学员快速入门并熟练掌握R语言,掌握如何利用R丰富的网上资料和帮助系统,学会高级的编程方法。

(2)本结合数据挖掘的思想和实际案例,深入浅出地讲解如何使用R语言进行实际数据挖掘。

(3)学完本课程后,使学员基本上可以使用R语言进行实际的数据挖掘工作,可以直接应聘各大公司的数据挖掘岗位。


培训内容目录:
【初级班】

专题名称

授课内容

第1讲 (3小时)

R语言入门


目标:掌握R语言的基本用法

1.R语言介绍

2.编辑软件Rstudio使用

3.R程序包的载入与使用

4.数据对象及运算(向量、矩阵、数组、列表与数据框处理)


第2讲(3小时)

数据读写

R基本编程


目标:掌握用R编写函数和数据的读写

1. R数据读入与读出 (读入txt、xls、SPSS、SAS、stata以及数据库文件)

2.R 函数编写

3.R的条件与循环函数

4.高效编程技巧介绍

5.利用R做迭代优化求解


第3讲(3小时)

数据预处理

探索性分析


目标:掌握数据预处理与探索性分析

1. 数据预处理

2. 缺失值处理

3. 随机数生成

4. 常用统计方法的蒙特卡洛模拟

5. 随机抽样

6.单变量数据分析与作图

7.双变量数据分析与作图

8.多变量数据分析与作图

案例1:统计作图在调查数据中的应用

案例2:统计作图在临床医学中的应用


第4讲(3小时)

数据挖掘与机器学习入门

KNN方法


目标:数据挖掘与机器学习入门介绍

1.何为数据挖掘与机器学习

2.数据挖掘与机器学习的主要研究内容

3.有监督学习与无监督学习区别

4.KNN方法

案例1:统计作图在调查数据中的应用


第5讲(3小时)

线性回归


目标:掌握线性回归方法与实际的建模分析

1. 一元线性回归

2.多元线性回归

3. 逐步回归

案例1:广告营销计划案例

案例2:信用卡债务预测案例

案例3:房价预测案例

第6讲(3小时)

线性分类方法

互动交流讨论


目标:掌握经典线性分类方法及其应用

1.Logistic模型

2.LDA判别分类

3.QDA判别分类

案例1:信用卡违约预测案例

案例2:股价涨跌方向预测案例

互动交流讨论


【高级班】

专题名称

授课内容


第1讲

重抽样方法


目标:掌握经典重抽样方法

1.验证集方法

2.交叉验证

3.Bootstrap方法

案例1:量化投资资产配置案例

案例2:汽车每加仑汽油里程数预测案例


第2讲(3小时)

决策树

组合预测


目标:掌握决策树和组合预测方法及其实际应用。

1.CART决策树

2.Bagging,

3.随机森林

4.Boosting算法

案例1:棒球运动员薪水预测案例

案例2:心脏病预测案例

案例3:信用卡违约预测案例


第3讲(3小时)

支持向量机


课程目标:掌握支持向量机分类方法

1.间隔分类器

2.支持向量分类器

3.支持向量机

案例1:基因表达数据案例

案例2:股票涨跌方向预测


第4讲(3小时)

变量选择与高维数据


课程目标:掌握数据挖掘中高维数据分析方法及其实际应用。

1.LASSO

2.SCAD

3.MCP

4.GroupLASSO

案例1:基因筛选

案例2:股票选股


第5讲(3小时)

无监督学习

主成分分析

主成分回归

聚类分析


目标:掌握无监督学习方法及其应用。

1.主成分分析

2.主成分回归

3.Kmeans聚类分析

4.系统聚类分析

案例1:广告支出主成分分析

案例2:犯罪率主成分分析

案例3:学生考试成绩主成分分析

案例4:客户细分聚类案例


第6讲(3小时)

关联规则

互动交流讨论


目标:掌握大数据分析中常用的关联规则方法及其应用。

1.关联规则方法

2.Aprior算法

案例1:超市购物篮分析

案例2:杂货店商品推荐分析


优惠:

现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;

以上优惠不叠加。


报名流程:
1:点击“我要报名”,网上填写信息提交,注明报全程还是阶段
2:给予反馈,确认报名信息
3:网上缴费
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南
联系方式:
魏老师
QQ:2881989714
Mail:vip@pinggu.org
Tel: 010-68478566

「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
本文关键词:

本文论坛网址:https://bbs.pinggu.org/thread-2271189-1-1.html

人气文章

1.凡人大经济论坛-经管之家转载的文章,均出自其它媒体或其他官网介绍,目的在于传递更多的信息,并不代表本站赞同其观点和其真实性负责;
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。
联系客服
值班时间:工作日(9:00--18:00)