您当前的位置>
软件培训>>
SAS软件培训
>>SAS training course notes: Effective Web Mining:Attracting and Keeping Valued Cy
SAS training course notes: Effective Web Mining:Attracting and Keeping Valued Cy
发布:zhongqhc | 分类:SAS软件培训
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
TOP热门关键词
详细介绍了如何用SAS/EM进行分析,独家发布.EffectiveWebMining:AttractingandKeepingValuedCyberConsumers(632pages)CourseNotesofCustomerRelationshipManagementTrainingUsingDataMiningforCustomerRelationshipMa ...
免费学术公开课,扫码加入![]() |
Effective Web Mining:Attracting and Keeping Valued Cyber Consumers (632 pages)
Course Notes of CustomerRelationship Management Training
Using Data Mining for Customer Relationship Management Using SAS's award winning statistical, data mining and information delivery software you will learn how to build models that business users and campaign managers can utilize. For people new to CRM or business decision makers, the Customer Relationship Management Through Data Mining seminar provides a solid CRM background and high-level overview of how data mining techniques can be applied to acquire and retain customers. The curriculum includes courses detailing how to prepare, create models on, and analyze customer and web data.
Course Description
This course introduces data mining methodology for solving business problems arising from commercial use of the World Wide Web. Enterprise Miner™ software provides a foundation for Web mining projects.
Additional tools from other SAS products, including SAS/STAT® and SAS/ETS® software, are used to drive applications relevant to e-commerce. The course emphasizes business problems in e-commerce and illustrates the solution of these problems using predictive modeling techniques applied to Web log,transactional, marketing, and operational data.
Table of Contents
Course Description....................................................................................................................vii
Prerequisites ..............................................................................................................................viii
General Conventions ................................................................................................................... ix
Chapter 1 Introduction ........................................................................................... 1-1
1.1 Web Sites and Web Solutions ..........................................................................................1-3
1.2 A Selection of Business Pains........................................................................................1-22
1.3 A Collection of Data Mining Tools................................................................................1-31
1.4 Introduction to Predictive Modeling..............................................................................1-38
1.5 The Apache Web Server (Optional) ...............................................................................1-66
1.6 References.....................................................................................................................1-73
Chapter 2 Data ........................................................................................................ 2-1
2.1 Types of Data ...................................................................................................................2-3
2.2 Web Log Data ................................................................................................................2-44
2.3 Cookies and Other Data Collection Tools......................................................................2-71
2.4 Proactive Web Data Gathering: Bots and Intelligent Agents .........................................2-81
2.5 Data Preparation for Predictive Modeling .....................................................................2-91
2.6 Exercises ........................................................................................................................2-99
2.7 References....................................................................................................................2-100
Chapter 3 Knowing Your Customers .................................................................... 3-1
3.1 Web Site Statistics for Evaluating Visitors ......................................................................3-3
3.2 Introduction to Clustering and Segmentation ................................................................3-53
3.3 Customer Profiling.........................................................................................................3-79
3.4 Exercises ......................................................................................................................3-119
3.5 References....................................................................................................................3-120
Chapter 4 Attracting Cyber Consumers ............................................................... 4-1
4.1 Introduction to Web Site Marketing.................................................................................4-3
4.2 Evaluating Visitor Behavior...........................................................................................4-51
4.3 Evaluating Web Page Design .........................................................................................4-69
4.4 Comparing Your Web Site to Competitors...................................................................4-106
4.5 Exercises ......................................................................................................................4-113
4.6 References....................................................................................................................4-114
Chapter 5 Evaluating Cyber Consumers .............................................................. 5-1
5.1 Descriptive Techniques for Evaluating Buyer Behavior..................................................5-3
5.2 Estimating the Propensity to Buy ..................................................................................5-21
5.3 Estimating the Propensity to Abandon the Site..............................................................5-33
5.4 Model-Based Selection of Banner Ads ..........................................................................5-54
5.5 Exercises ........................................................................................................................5-75
5.6 References.....................................................................................................................5-76
Chapter 6 Keeping Cyber Consumers .................................................................. 6-1
6.1 Data Driven Service for Shopping Comparison Sites......................................................6-3
6.2 Introduction to Recommender Systems .........................................................................6-19
6.3 Recommender System Applications ..............................................................................6-27
6.4 Exercises ........................................................................................................................6-55
6.5 References.....................................................................................................................6-56
Appendix A Data....................................................................................................... A-1
A.1 Ad Campaign Data..........................................................................................................A-3
A.2 Banner Ad Data...............................................................................................................A-4
A.3 Buy Data and Abandon Data...........................................................................................A-6
A.4 Customers Data...............................................................................................................A-9
A.5 Direct Mail Data ........................................................................................................... A-11
A.6 Financial Services Data.................................................................................................A-13
A.7 Movie Data ...................................................................................................................A-15
A.8 Path Analysis Data ........................................................................................................A-18
A.9 Profile Data ...................................................................................................................A-19
A.10 Stochastic Process Data ................................................................................................A-21
A.11 Web Logs ......................................................................................................................A-22
A.12 Web Time Series Data...................................................................................................A-23
Appendix B SAS Programs ..................................................................................... B-1
B.1 The SAS System ............................................................................................................. B-3
B.2 Reading Web Log Files................................................................................................... B-9
B.3 A SAS Robot................................................................................................................. B-14
B.4 The Output Delivery System and HTML ..................................................................... B-21
B.5 Web Stats....................................................................................................................... B-23
B.6 Time Series Methods .................................................................................................... B-27
B.7 Analysis of Data from Designed Experiments.............................................................. B-30
B.8 Transition Probabilities for Stochastic Processes.......................................................... B-31
B.9 Logistic Regression....................................................................................................... B-32
B.10 Data Driven Web Services ............................................................................................ B-34
B.11 Enterprise Miner Macro Variables and Score Code...................................................... B-40
Appendix C SEMMA Methodology.......................................................................... C-1
C.1 Enterprise Miner SEMMA Methodology ....................................................................... C-3
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
- SAS软件培训 ... | SAS 9.2 licence 网上找的 好像是 ...
- SAS软件培训 ... | Optimum Experimental Designs, ...
- SAS软件培训 ... | SAS专版实习版主webgu的实习总结 ...
- SAS软件培训 ... | [分享]SAS® Intelligence ...
- SAS软件培训 ... | [推荐]SAS9.1.3带Enterprise Min ...
- SAS软件培训 ... | 最新更新SAS 9.3 32bit SID 2013 ...
- SAS软件培训 ... | sas查找对应的准备金率
- SAS软件培训 ... | 面板数据SAS实现(1)
人气文章
本文标题:SAS training course notes: Effective Web Mining:Attracting and Keeping Valued Cy
本文链接网址:https://bbs.pinggu.org/jg/ruanjianpeixun_sasruanjianpeixun_182634_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



