统计必读!数据挖掘必读!高维数据分析(High-Dimensional Data Analysis)
发布:husteconyy | 分类:数据分析
关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
论文
- 毕业论文 | 写毕业论文
- 毕业论文 | 为毕业论文找思路
- 毕业论文 | 可以有时间好好写 ...
- 毕业论文 | 毕业论文如何选较 ...
- 毕业论文 | 毕业论文选题通过 ...
- 毕业论文 | 还有三人的毕业论 ...
- 毕业论文 | 毕业论文答辩过程 ...
- 毕业论文 | 本科毕业论文,wi ...
考研考博
- 考博 | 南大考博经济类资 ...
- 考博 | 考博英语10000词汇 ...
- 考博 | 如果复旦、南大这 ...
- 考博 | 有谁知道春招秋季 ...
- 考博 | 工作与考博?到底 ...
- 考博 | 考博应该如何选择 ...
- 考博 | 考博失败了
- 考博 | 考博考研英语作文 ...
TOP热门关键词
High-DimensionalDataAnalysisByTonyCai,XiaotongShen(15Dec2010)文件有点大,压缩成3个文件,全部下载之后放在同一个文件夹中解压缩即可。回复可见:[hide][/hide]Introduction:overthelastfewyears,significantd ...
扫码加入统计交流群![]() |
文件有点大,压缩成3个文件,全部下载之后放在同一个文件夹中解压缩即可。
回复可见:[hide][/hide]
Introduction:
over the last few years, significant developments have been taking place in high-dimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. in particular, substantial advances have been made in the areas of feature selection, covariance estimation,classification and regression. this book intends to examine important issues arising from high-dimensional data analysis to explore key ideas for statistical inference and prediction. it is structured around topics on multiple hypothesis testing, feature selection, regression, classification, dimension reduction, as well as applications in survival analysis and biomedical research. the book will appeal to graduate students and new researchers interested in the plethora of opportunities available in highdimensional data analysis.
Contents:
Preface
part i high-dimensional classification
chapter 1 high-dimensional classification jianqing fan, yingying fan and yichao wu
1 introduction
2 elements of classifications
3 impact of dimensionality on classification
4 distance-based classification rules
5 feature selection by independence rule
6 loss-based classification
7 feature selection in loss-based classification
8 multi-category classification
references
chapter 2 flexible large margin classifiers yufeng liu and yichao wu
1 background on classification
2 the support vector machine: the margin formulation and the sv interpretation
3 regularization framework
4 some extensions of the svm: bounded constraint machine and the balancing svm
5 multicategory classifiers
6 probability estimation
7 conclusions and discussions
references
part ii large-scale multiple testing
chapter 3 a compound decision-theoretic approach to large-scale multiple testing
t tony cai and wenguang sun
1 introduction
2 fdr controlling procedures based on p-values
3 oracle and adaptive compound decision rules for fdr control
4 simultaneous testing of grouped hypotheses
5 large-scale multiple testing under dependence
6 open problems
references
part iii model building with variable selection
chapter 4 model building with variable selection ming yuan
1 introduction
2 why variable selection
3 classical approaches
4 bayesian and stochastic search
5 regularization
6 towards more interpretable models
7 further readings
references
chapter 5 bayesian variable selection in regression with networked predictors
feng tai, wei pan and xiaotong shen
1 introduction
2 statistical models
3 estimation
4 results
5 discussion
references
part iv high-dimensional statistics in genomics
chapter 6 high-dimensional statistics in genomics hongzhe li
1 introduction
2 identification of active transcription factors using time-course gene expression data
3 methods for analysis of genomic data with a graphical str
4 statistical methods in eqtl studies
5 discussion and future direction
references
chapter 7 an overview on joint modeling of censored survival time and longitudinal data
runze li and jian-jian ren
1 introduction
2 survival data with longitudinal covariates
3 joint modeling with right censored data
4 joint modeling with interval censored data
5 further studies
references
part v analysis of survival and longitudinal data
chapter 8 survival analysis with high-dimensional covariates bin nan
1 introduction
2 regularized cox regression
3 hierarchically penalized cox regression with grouped variables
4 regularized methods for the accelerated failure time model
5 tuning parameter selection and a concluding remark
references
part vi sufficient dimension reduction in regression
chapter 9 sufficient dimension reduction in regression xiangrong yin
1 introduction
2 sufficient dimension reduction in regression
3 sufficient variable selection (svs)
4 sdr for correlated data and large-p-small-n
5 further discussion
references
chapter 10 combining statistical procedures lihua chen and yuhong yang
1 introduction
2 combining for adaptation
3 combining procedures for improvement
4 concluding remarks
references
subject index
author index
「经管之家」APP:经管人学习、答疑、交友,就上经管之家!
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
本文标题:统计必读!数据挖掘必读!高维数据分析(High-Dimensional Data Analysis)
本文链接网址:https://bbs.pinggu.org/jg/shuju_shujufenxi_2370108_1.html
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



