关于本站
人大经济论坛-经管之家:分享大学、考研、论文、会计、留学、数据、经济学、金融学、管理学、统计学、博弈论、统计年鉴、行业分析包括等相关资源。
经管之家是国内活跃的在线教育咨询平台!
获取电子版《CDA一级教材》
完整电子版已上线CDA网校,累计已有10万+在读~ 教材严格按考试大纲编写,适合CDA考生备考,也适合业务及数据分析岗位的从业者提升自我。
论文
- 毕业论文 | 写毕业论文
- 毕业论文 | 为毕业论文找思路
- 毕业论文 | 可以有时间好好写 ...
- 毕业论文 | 毕业论文如何选较 ...
- 毕业论文 | 毕业论文选题通过 ...
- 毕业论文 | 还有三人的毕业论 ...
- 毕业论文 | 毕业论文答辩过程 ...
- 毕业论文 | 本科毕业论文,wi ...
考研考博
- 考博 | 南大考博经济类资 ...
- 考博 | 考博英语10000词汇 ...
- 考博 | 如果复旦、南大这 ...
- 考博 | 有谁知道春招秋季 ...
- 考博 | 工作与考博?到底 ...
- 考博 | 考博应该如何选择 ...
- 考博 | 考博失败了
- 考博 | 考博考研英语作文 ...
TOP热门关键词
扫码加入金融交流群![]() |
数据分析师如何利用数据仓库优化数据分析
关于数据分析师如何利用数据仓库优化数据分析,数据分析大致包括以下流程:业务理解 - 数据理解 - 数据准备 - 建模 - 评估 - 部署。下面就是以下相关的介绍,希望可以对数据分师们有所帮助。
由于数据分析对数据质量、格式的要求天然就比较高,对数据的理解也必须非常深刻,使得数据契合业务需求也要一定的过程,这样,根据我们的经验,在整个数据分析流程中,用于数据处理的时间往往要占据70%以上。
因此,如何高效、快速地进行数据理解和处理,往往决定了数据分析项目的进度和质量。
而数据仓库具有集成、稳定、高质量等特点,基于数据仓库为数据分析提供数据,往往能够更加保证数据质量和数据完整性。
利用数据仓库进行数据分析无疑能够给我们的工作带来很大便利,那么,究竟要如何操作呢?我们首先需要了解数据仓库的优势,数据仓库至少可以从如下三个方面提升数据分析效率:
1. 数据理解
数据仓库是面向主题的,所以其自身与业务结合就相对紧密和完善,更方便数据分析师基于数据理解业务。下图是Teradata关于金融行业的成熟模型:
(出自Teradata FS-LDM官方文档)
我们可以看到,整个数据仓库被分为十大主题,而金融行业所有的数据、业务都会被这十大主题涵盖。
当我们需要找某个信用卡账户信息时,我们就去协议(AGREEMENT)主题,需要某次存款交易信息时就去探寻事件(EVENT)主题,需要某个理财产品相关信息就挖掘产品(PRODUCT)主题,如此类推,我们就会发现十大主题将整个金融行业的数据划分得非常清晰,我们需要做的就是拿到业务需求,理解数据仓库的模型,数据理解也就水到渠成了。
2. 数据质量
数据分析要求数据是干净、完整的,而数据仓库最核心的一项工作就是ETL过程,流程如下:
而数据仓库已经对源系统的数据进行了业务契合的转换,以及脏数据的清洗,这就为数据分析的数据质量做了较好的保障。
3.数据跨系统关联
上图是数据仓库的一个简单架构,可以看到,各业务源系统的数据经过ETL过程后流入数据仓库,当不同系统数据整合到数据仓库之后,至少解决了数据分析中的两个问题:
第一,跨系统数据收集问题,同一个客户的储蓄交易和理财交易我们在同一张事件表就可以找到;
第二,跨系统关联问题,同一个客户可能在不同系统中记录了不同的客户号,甚至存在不同的账号,进行数据整合时,总是需要找到共同的“纽带”来关联来自不同系统的信息,而数据仓库在ETL过程中就会整合相关客户信息,完美解决跨系统关联问题。
可见,数据仓库是整合的、面向主题的、数据质量高的、跨系统的优质数据源,那么,我们该如何充分利用这些优势呢?笔者总结了如下经验:
1.研究数据仓库模型:数仓的精髓就是面向主题的模型,能理解各大主题域范畴,熟悉不同主题间的关系,基本就掌握了数仓的架构;
2. 学习数据仓库设计文档:设计文档是业务与数据,数仓与源系统的桥梁,熟悉表间mapping映射,就能快速定位需求变量的来源和处理逻辑,全面了解相关业务;
3. 熟悉数据字典表:数据字典是数据仓库物理存储的信息库,可以通过数据字典了解库、表、字段不同层级的关系、存储、类型等信息;
4. 研究ETL脚本:学习几个数据仓库ETL加工脚本,能更细致的探索数据加工处理逻辑,更清楚的理解数仓加工模式,快速掌握数据加工技巧;
5. 观察明细数据:想要真正了解数据,就必须对具体数据进行不同维度和层次的观察;比如事件表,从交易类型、时间、渠道、业务种类等多个维度捞几条数据,观察某个相同条件下不同维度的交易变化,了解银行交易的全景信息,帮助理解业务,熟悉数据。
事实上,除此之外,数据处理人员还应该从中学习到数据仓库的思想:面向主题,逐层加工。
面向主题是指让杂乱的数据结合业务划分,更容易着手处理原本杂乱的数据,数据处理人员只需知道哪些数据属于哪个主题,然后基于主题再进一步处理;逐层加工则是指让细粒度的数据走向宽表的过程清晰,有层次,数据处理过程中清楚每一步的产出是什么。
其实,每一个数据分析师或者数据处理师都会有自己的工作习惯和经验,以上是笔者经历两年多数据仓库开发、三年数据仓库和数据分析兼职者的经验总结的一些心得,希望对大家有所帮助。
免流量费下载资料----在经管之家app可以下载论坛上的所有资源,并且不额外收取下载高峰期的论坛币。
涵盖所有经管领域的优秀内容----覆盖经济、管理、金融投资、计量统计、数据分析、国贸、财会等专业的学习宝库,各类资料应有尽有。
来自五湖四海的经管达人----已经有上千万的经管人来到这里,你可以找到任何学科方向、有共同话题的朋友。
经管之家(原人大经济论坛),跨越高校的围墙,带你走进经管知识的新世界。
扫描下方二维码下载并注册APP
您可能感兴趣的文章
人气文章
2.转载的文章仅代表原创作者观点,与本站无关。其原创性以及文中陈述文字和内容未经本站证实,本站对该文以及其中全部或者部分内容、文字的真实性、完整性、及时性,不作出任何保证或承若;
3.如本站转载稿涉及版权等问题,请作者及时联系本站,我们会及时处理。



