《A Fast Algorithm for Computing High-dimensional Risk Parity Portfolios》
---
作者:
Th\\\'eophile Griveau-Billion, Jean-Charles Richard and Thierry Roncalli
---
最新提交年份:
2013
---
英文摘要:
In this paper we propose a cyclical coordinate descent (CCD) algorithm for solving high dimensional risk parity problems. We show that this algorithm converges and is very fast even with large covariance matrices (n > 500). Comparison with existing algorithms also shows that it is one of the most efficient algorithms.
---
中文摘要:
本文提出了一种求解高维风险奇偶性问题的循环坐标下降(CCD)算法。我们证明了该算法的收敛性,并且即使在协方差矩阵较大(n>500)的情况下也非常快。与现有算法的比较也表明它是最有效的算法之一。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
PDF下载:
-->
A_Fast_Algorithm_for_Computing_High-dimensional_Risk_Parity_Portfolios.pdf
(508.84 KB)


雷达卡



京公网安备 11010802022788号







