《Sparse Mean-Variance Portfolios: A Penalized Utility Approach》
---
作者:
David Puelz, P. Richard Hahn, Carlos M. Carvalho
---
最新提交年份:
2016
---
英文摘要:
This paper considers mean-variance optimization under uncertainty, specifically when one desires a sparsified set of optimal portfolio weights. From the standpoint of a Bayesian investor, our approach produces a small portfolio from many potential assets while acknowledging uncertainty in asset returns and parameter estimates. We demonstrate the procedure using static and dynamic models for asset returns.
---
中文摘要:
本文考虑了不确定性条件下的均值-方差优化问题,特别是当一个人想要一组最优投资组合权重的稀疏集时。从贝叶斯投资者的角度来看,我们的方法从许多潜在资产中产生一个小的投资组合,同时承认资产回报和参数估计的不确定性。我们使用资产收益的静态和动态模型来演示这个过程。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Sparse_Mean-Variance_Portfolios:_A_Penalized_Utility_Approach.pdf
(468.28 KB)


雷达卡



京公网安备 11010802022788号







