英文标题:
《Exponential utility maximization under model uncertainty for unbounded
endowments》
---
作者:
Daniel Bartl
---
最新提交年份:
2019
---
英文摘要:
We consider the robust exponential utility maximization problem in discrete time: An investor maximizes the worst case expected exponential utility with respect to a family of nondominated probabilistic models of her endowment by dynamically investing in a financial market, and statically in available options. We show that, for any measurable random endowment (regardless of whether the problem is finite or not) an optimal strategy exists, a dual representation in terms of (calibrated) martingale measures holds true, and that the problem satisfies the dynamic programming principle (in case of no options). Further it is shown that the value of the utility maximization problem converges to the robust superhedging price as the risk aversion parameter gets large, and examples of nondominated probabilistic models are discussed.
---
中文摘要:
我们考虑离散时间的鲁棒指数效用最大化问题:投资者通过动态投资于金融市场和静态投资于可用期权,使其禀赋的非占优概率模型族的最坏情况预期指数效用最大化。我们证明,对于任何可测量的随机禀赋(无论问题是否有限),存在一个最优策略,一个关于(校准的)鞅测度的对偶表示成立,并且该问题满足动态规划原理(在没有选项的情况下)。进一步证明了当风险规避参数变大时,效用最大化问题的值收敛到鲁棒超边际价格,并讨论了非支配概率模型的例子。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







