2044 1

[疑难杂症]Multilevel Modeling in SAS and Model Fit? [推广有奖]

  • 0关注
  • 10粉丝

教授

8%

还不是VIP/贵宾

-

TA的文库  其他...

Must-Read Book

Winrats NewOccidental

Matlab NewOccidental

威望
1
论坛币
31179 个
通用积分
3.6519
学术水平
96 点
热心指数
43 点
信用等级
79 点
经验
9658 点
帖子
287
精华
10
在线时间
40 小时
注册时间
2013-12-14
最后登录
2024-4-12

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
I am developing a two-level random intercept model with a dichotomous outcome in SAS. I would like to know what indices I may use to check if the model is on the right track. The outcome is administration of a certain drug across all hospitals in the data. The predictors include person level medical conditions and hospital level characteristics (size, beds, etc.)The ICC is only 0.04. Does that indicate that multilevel modeling is unnecessary? I'm also aware that ICC is not always reliable. Is there other index I may use to evaluate my model?

I'm new to multilevel modeling in SAS. Can anyone take a look at my syntax? I would greatly appreciate it!

Here's a simplified version (Person_condition is the within level variable, hospital_beds/size is the between level variable). My specific question is:should I use

ddfm=satterth, and tech=nrridg?

*proc* *glimmix* data= anti_LinkageFinal;

class hospitil person_condition1 person_condition2 hospital_size;

model drug  = person_condition1 person_condition2 hospital_beds
hospital_size

/ dist=binary link=logit ddfm=satterth oddsratio;

random intercept / subject=hospital solution;

nloptions tech=nrridg;

ods exclude solutionr;

run;


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Multilevel Modeling model multi Level indicate include always person across

本帖被以下文库推荐

沙发
ibeikeleilei 发表于 2014-5-20 07:25:00 |只看作者 |坛友微信交流群
支持一下!!!!!!!!

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-11-6 05:02