《The geometry of multi-marginal Skorokhod Embedding》
---
作者:
Mathias Beiglboeck, Alexander Cox, Martin Huesmann
---
最新提交年份:
2017
---
英文摘要:
The Skorokhod Embedding Problem (SEP) is one of the classical problems in the study of stochastic processes, with applications in many different fields (cf.~ the surveys \\cite{Ob04,Ho11}). Many of these applications have natural multi-marginal extensions leading to the \\emph{(optimal) multi-marginal Skorokhod problem} (MSEP). Some of the first papers to consider this problem are \\cite{Ho98b, BrHoRo01b, MaYo02}. However, this turns out to be difficult using existing techniques: only recently a complete solution was be obtained in \\cite{CoObTo15} establishing an extension of the Root construction, while other instances are only partially answered or remain wide open. In this paper, we extend the theory developed in \\cite{BeCoHu14} to the multi-marginal setup which is comparable to the extension of the optimal transport problem to the multi-marginal optimal transport problem. As for the one-marginal case, this viewpoint turns out to be very powerful. In particular, we are able to show that all classical optimal embeddings have natural multi-marginal counterparts. Notably these different constructions are linked through a joint geometric structure and the classical solutions are recovered as particular cases. Moreover, our results also have consequences for the study of the martingale transport problem as well as the peacock problem.
---
中文摘要:
Skorokhod嵌入问题(SEP)是随机过程研究中的经典问题之一,在许多不同领域都有应用(参见《调查》{Ob04,Ho11})。其中许多应用程序具有自然的多边缘扩展,导致了{(最优)多边缘Skorokhod问题}(MSEP)。一些最先考虑这个问题的论文是{Ho98b,BrHoRo01b,MAY02}。然而,使用现有技术很难做到这一点:直到最近,才在{CoObTo15}中获得了一个完整的解决方案,建立了根结构的扩展,而其他实例只得到了部分回答或保持完全开放。在本文中,我们将{BeCoHu14}中发展的理论推广到多边际设置,这与将最优运输问题推广到多边际最优运输问题相当。至于一个边缘案例,这种观点证明是非常有力的。特别是,我们能够证明所有经典的最优嵌入都有自然的多边缘对应。值得注意的是,这些不同的构造通过节理几何结构连接,经典解作为特殊情况恢复。此外,我们的结果也对鞅输运问题和孔雀问题的研究产生了影响。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->
The_geometry_of_multi-marginal_Skorokhod_Embedding.pdf
(467.53 KB)


雷达卡



京公网安备 11010802022788号







