《Evaluating Range Value at Risk Forecasts》
---
作者:
Tobias Fissler and Johanna F. Ziegel
---
最新提交年份:
2020
---
英文摘要:
The debate of what quantitative risk measure to choose in practice has mainly focused on the dichotomy between Value at Risk (VaR) -- a quantile -- and Expected Shortfall (ES) -- a tail expectation. Range Value at Risk (RVaR) is a natural interpolation between these two prominent risk measures, which constitutes a tradeoff between the sensitivity of the latter and the robustness of the former, turning it into a practically relevant risk measure on its own. As such, there is a need to statistically validate RVaR forecasts and to compare and rank the performance of different RVaR models, tasks subsumed under the term \'backtesting\' in finance. The predictive performance is best evaluated and compared in terms of strictly consistent loss or scoring functions. That is, functions which are minimised in expectation by the correct RVaR forecast. Much like ES, it has been shown recently that RVaR does not admit strictly consistent scoring functions, i.e., it is not elicitable. Mitigating this negative result, this paper shows that a triplet of RVaR with two VaR components at different levels is elicitable. We characterise the class of strictly consistent scoring functions for this triplet. Additional properties of these scoring functions are examined, including the diagnostic tool of Murphy diagrams. The results are illustrated with a simulation study, and we put our approach in perspective with respect to the classical approach of trimmed least squares in robust regression.
---
中文摘要:
关于在实践中选择何种量化风险度量的争论主要集中在风险价值(VaR)——分位数——和预期短缺(ES)——尾部预期之间的二分法上。风险范围价值(RVaR)是这两个重要风险度量之间的一个自然插值,它在后者的敏感性和前者的稳健性之间进行权衡,使其自身成为一个实际相关的风险度量。因此,需要对RVA预测进行统计验证,并对不同RVA模型的性能进行比较和排序,这些模型和任务包含在财务术语“后验”中。预测性能最好根据严格一致的损失或评分函数进行评估和比较。也就是说,通过正确的RVA预测,函数的期望值最小化。与ES非常相似,最近的研究表明,RVaR不支持严格一致的评分函数,即它是不可导出的。为了缓解这一负面结果,本文表明,在不同水平上具有两个VaR分量的RVaR三元组是可以得出的。我们为这个三元组描述了严格一致的评分函数类。本文还研究了这些评分函数的其他属性,包括墨菲图的诊断工具。结果通过仿真研究进行了说明,我们将我们的方法与稳健回归中的经典修剪最小二乘法进行了比较。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
PDF下载:
-->
Evaluating_Range_Value_at_Risk_Forecasts.pdf
(401.46 KB)


雷达卡



京公网安备 11010802022788号







