|
没有负溢出,那么从(45)和(51),DWL等于DW L(y)=1{y≤ τ} ×(p- p) ×q(p,y,π){z}补贴支出- 1{y≤ τ} ×Zp+αβ(π)-π) pq(p,y,π)dp |{z}可消除福利收益-1{y>τ}×Zp+αβ(π-π) pq(p,y,π)dp{z}无资格者的福利收益。所以如果αβ(π- π) 如果足够大,则无谓损失可能为负,即补贴在正溢出下提高经济效率,如在标准文本书架中。之所以会出现这种情况,是因为不存在针对不符合条件者的补贴支出,而那些购买的人由于正溢出效应而享受减少的福利收益补贴。同样,eligibles还通过正溢出获得额外的福利收益,超过因价格下降而获得的福利收益,并且只有后者由补贴支出提供资金。通常,当(i)正溢出(α)较大,(ii)变化不平衡作用(π)时,静重损失将较低(更负- π) 由于补贴较大,以及(iii)需求的价格弹性(-β) 更低–即使在没有溢出的情况下,最后一个效应也可以通过减少替代效应来降低自重损失。4.4预测需求和福利的计算为了计算我们的福利相关数量,我们需要估计结构选择概率q(p,y,π)以及干预前后总选择概率π和π的平衡值。为此,我们将考虑两种备选方案。首先,我们假设不可观测的η=ηvh独立于可用实验数据中p rice和Income的实现值(以其他协变量为条件)。第二,我们假设外生性成立,条件是未观察到的村庄固定效应。
|