《Density analysis of non-Markovian BSDEs and applications to biology and
finance》
---
作者:
Thibaut Mastrolia (CEREMADE)
---
最新提交年份:
2016
---
英文摘要:
In this paper, we provide conditions which ensure that stochastic Lipschitz BSDEs admit Malliavin differentiable solutions. We investigate the problem of existence of densities for the first components of solutions to general path-dependent stochastic Lipschitz BSDEs and obtain results for the second components in particular cases. We apply these results to both the study of a gene expression model in biology and to the classical pricing problems in mathematical finance.
---
中文摘要:
本文给出了随机Lipschitz BSDE允许Malliavin可微解的条件。我们研究了一般路径相关随机Lipschitz盲分离方程解的第一组分的密度存在性问题,并在特殊情况下得到了第二组分的结果。我们将这些结果应用于生物学中基因表达模型的研究和数学金融中的经典定价问题。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
Density_analysis_of_non-Markovian_BSDEs_and_applications_to_biology_and_finance.pdf
(1.14 MB)


雷达卡



京公网安备 11010802022788号







