英文标题:
《An Economic Bubble Model and Its First Passage Time》
---
作者:
Angelos Dassios, Luting Li
---
最新提交年份:
2018
---
英文摘要:
We introduce a new diffusion process Xt to describe asset prices within an economic bubble cycle. The main feature of the process, which differs from existing models, is the drift term where a mean-reversion is taken based on an exponential decay of the scaled price. Our study shows the scaling factor on Xt is crucial for modelling economic bubbles as it mitigates the dependence structure between the price and parameters in the model. We prove both the process and its first passage time are well-defined. An efficient calibration scheme, together with the probability density function for the process are given. Moreover, by employing the perturbation technique, we deduce the closed-form density for the downward first passage time, which therefore can be used in estimating the burst time of an economic bubble. The object of this study is to understand the asset price dynamics when a financial bubble is believed to form, and correspondingly provide estimates to the bubble crash time. Calibration examples on the US dot-com bubble and the 2007 Chinese stock market crash verify the effectiveness of the model itself. The example on BitCoin prediction confirms that we can provide meaningful estimate on the downward probability for asset prices.
---
中文摘要:
我们引入了一个新的扩散过程Xt来描述经济泡沫周期内的资产价格。与现有模型不同的是,该过程的主要特征是漂移项,其中均值回归基于标度价格的指数衰减。我们的研究表明,Xt上的比例因子对于建模经济泡沫至关重要,因为它可以缓解模型中价格和参数之间的依赖结构。我们证明了这个过程及其第一次通过时间都是明确定义的。给出了一种有效的校准方案,以及该过程的概率密度函数。此外,通过采用微扰技术,我们推导出了向下首次通过时间的闭合形式密度,因此可用于估计经济泡沫的破裂时间。本研究的目的是了解金融泡沫形成时的资产价格动态,并相应地估计泡沫破灭的时间。美国网络泡沫和2007年中国股市崩盘的校准示例验证了模型本身的有效性。比特币预测的例子证实,我们可以对资产价格的下降概率提供有意义的估计。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







