英文标题:
《European Option Pricing with Stochastic Volatility models under
Parameter Uncertainty》
---
作者:
Samuel N. Cohen and Martin Tegn\\\'er
---
最新提交年份:
2018
---
英文摘要:
We consider stochastic volatility models under parameter uncertainty and investigate how model derived prices of European options are affected. We let the pricing parameters evolve dynamically in time within a specified region, and formalise the problem as a control problem where the control acts on the parameters to maximise/minimise the option value. Through a dual representation with backward stochastic differential equations, we obtain explicit equations for Heston\'s model and investigate several numerical solutions thereof. In an empirical study, we apply our results to market data from the S&P 500 index where the model is estimated to historical asset prices. We find that the conservative model-prices cover 98% of the considered market-prices for a set of European call options.
---
中文摘要:
我们考虑了参数不确定性下的随机波动率模型,并研究了模型导出的欧式期权价格是如何受到影响的。我们让定价参数在指定区域内随时间动态演化,并将问题形式化为控制问题,其中控制作用于参数以最大化/最小化期权价值。通过倒向随机微分方程的对偶表示,我们得到了Heston模型的显式方程,并研究了其几个数值解。在一项实证研究中,我们将我们的结果应用于标准普尔500指数的市场数据,其中模型是根据历史资产价格估计的。我们发现保守模型价格覆盖了一组欧洲看涨期权所考虑市场价格的98%。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







